前言:想要寫(xiě)出一篇引人入勝的文章?我們特意為您整理了醫(yī)療CPS協(xié)作網(wǎng)絡(luò)控制策略?xún)?yōu)化淺析范文,希望能給你帶來(lái)靈感和參考,敬請(qǐng)閱讀。
摘要:醫(yī)院的信息化建設(shè)已經(jīng)進(jìn)入了智能化時(shí)代,越來(lái)越多的醫(yī)療cps(CyberPhysicalSystems)在醫(yī)院實(shí)踐并應(yīng)用。然而,醫(yī)學(xué)學(xué)科的細(xì)化和醫(yī)院知識(shí)庫(kù)的缺乏,會(huì)導(dǎo)致醫(yī)療CPS在多并發(fā)癥疾病治療應(yīng)用上的可靠性不足。文中提出了一種醫(yī)療CPS協(xié)作架構(gòu),以提高醫(yī)療CPS的決策可靠性。CPS通過(guò)協(xié)作平臺(tái)向網(wǎng)絡(luò)上的智能單元發(fā)送協(xié)作任務(wù),響應(yīng)的智能單元共同輔助CPS進(jìn)行醫(yī)療決策。由于患者的生理數(shù)據(jù)是連續(xù)動(dòng)態(tài)的,且醫(yī)療CPS對(duì)響應(yīng)的及時(shí)性要求較高,文中進(jìn)一步優(yōu)化了協(xié)作網(wǎng)絡(luò)的控制策略來(lái)提高網(wǎng)絡(luò)通信效率,分別提出了CCD算法和HCD算法用于高級(jí)控制器和低級(jí)控制器的部署。最后,實(shí)驗(yàn)?zāi)M兩種算法并與K-means算法進(jìn)行了指標(biāo)對(duì)比,結(jié)果表明HCD算法在犧牲較少平均通信時(shí)延的情況下,大幅度提升了低級(jí)控制器的負(fù)載均衡。CCD算法更適合聚類(lèi)節(jié)點(diǎn)少的高級(jí)控制器部署,對(duì)目標(biāo)函數(shù)的優(yōu)化效果明顯優(yōu)于HCD算法和K-means算法。
關(guān)鍵詞:信息物理系統(tǒng);醫(yī)療;網(wǎng)絡(luò)控制;聚類(lèi);協(xié)作;
1背景
醫(yī)療CPS是信息物理系統(tǒng)在醫(yī)學(xué)上的應(yīng)用延伸[1-2]。復(fù)雜的生命系統(tǒng)與信息系統(tǒng)緊密交互的同時(shí),使醫(yī)療CPS面臨更多的挑戰(zhàn)[3]??煽啃允瞧渲幸豁?xiàng)重要挑戰(zhàn),一方面,大多數(shù)醫(yī)院的知識(shí)庫(kù)建設(shè)不足[4];另一方面,醫(yī)學(xué)學(xué)科的細(xì)化導(dǎo)致各類(lèi)專(zhuān)科、亞專(zhuān)科的醫(yī)生僅熟悉自己領(lǐng)域的專(zhuān)業(yè)知識(shí),而無(wú)法應(yīng)對(duì)多并發(fā)癥疾病的治療。因此,醫(yī)療CPS的可靠性不足,存在醫(yī)療安全隱患。在自然界中,協(xié)作使弱勢(shì)物種能夠在不同物種爭(zhēng)奪有限資源的環(huán)境中生存,協(xié)作也可以讓具有不同優(yōu)勢(shì)的物種交換資源得以協(xié)同進(jìn)化。受大自然的啟發(fā),醫(yī)療CPS通過(guò)網(wǎng)絡(luò)協(xié)作將優(yōu)勢(shì)資源進(jìn)行最大化整合是提高決策可靠性的有效方法,但需要平臺(tái)作為應(yīng)用支撐。此外,醫(yī)療CPS對(duì)醫(yī)療決策的及時(shí)性要求較高,因此,提高協(xié)作網(wǎng)絡(luò)的通信效率也是醫(yī)療CPS協(xié)作平臺(tái)有效應(yīng)用的重要保障之一。
2相關(guān)研究
人體是復(fù)雜的物理系統(tǒng),醫(yī)療CPS按照醫(yī)學(xué)的規(guī)律將計(jì)算、控制、交互有機(jī)結(jié)合,實(shí)現(xiàn)信息與人體的深度交互。在過(guò)去的十年里,越來(lái)越多的研究人員、工程師和醫(yī)務(wù)人員參與了醫(yī)療CPS的研究工作。這些研究涉及智能醫(yī)療設(shè)備[5]、生理數(shù)據(jù)識(shí)別[6]、嵌入式醫(yī)用軟件設(shè)計(jì)[7-8]、網(wǎng)絡(luò)服務(wù)[9-11]、異構(gòu)系統(tǒng)交互[12]、患者隱私保護(hù)等諸多方面。其中,文獻(xiàn)[13]開(kāi)發(fā)了用于監(jiān)測(cè)心率的醫(yī)療CPS平臺(tái)。文獻(xiàn)[14]設(shè)計(jì)了一個(gè)用于檢測(cè)早期陣發(fā)性交感神經(jīng)多動(dòng)癥的醫(yī)療CPS診斷平臺(tái)。文獻(xiàn)[15]開(kāi)發(fā)了一個(gè)開(kāi)源的醫(yī)療CPS平臺(tái),該平臺(tái)包括用于醫(yī)療設(shè)備(包括麻醉機(jī)、呼吸機(jī)和患者監(jiān)護(hù)儀)的軟件設(shè)備適配器、標(biāo)準(zhǔn)中間件和構(gòu)建在該平臺(tái)上的應(yīng)用程序,可實(shí)現(xiàn)智能報(bào)警、生理閉環(huán)控制算法、數(shù)據(jù)可視化和臨床研究數(shù)據(jù)采集等功能。文獻(xiàn)[16]提出了一種用于CPS與醫(yī)療設(shè)備通信的實(shí)時(shí)大數(shù)據(jù)計(jì)算平臺(tái)。文獻(xiàn)[17]強(qiáng)調(diào)了醫(yī)療CPS在機(jī)器人手術(shù)環(huán)境中的重要性,提出了一種用于機(jī)器人協(xié)作手術(shù)的CPS設(shè)計(jì)方法,旨在降低機(jī)器人手術(shù)系統(tǒng)的脆弱性。文獻(xiàn)[18]提出了一個(gè)由集中式醫(yī)療CPS架構(gòu)開(kāi)發(fā)的數(shù)據(jù)分析模塊,有助于最終實(shí)現(xiàn)患者健康監(jiān)測(cè)和遠(yuǎn)程治療自動(dòng)化。文獻(xiàn)[19]對(duì)醫(yī)學(xué)領(lǐng)域中人類(lèi)交互假設(shè)中的約束類(lèi)別進(jìn)行了分類(lèi),并開(kāi)發(fā)了一個(gè)數(shù)學(xué)假設(shè)模型,使用醫(yī)療呼吸機(jī)作為案例研究,以顯示數(shù)學(xué)假設(shè)模型提高呼吸機(jī)和醫(yī)療CPS安全性的原理。文獻(xiàn)[20]研究了電子病歷系統(tǒng)與CPS系統(tǒng)的接口設(shè)計(jì)。該接口主要用于生理數(shù)據(jù)的自動(dòng)讀取,避免了人為的錯(cuò)誤,提高了系統(tǒng)CPS的安全性。文獻(xiàn)[21]針對(duì)惡意入侵醫(yī)療CPS的行為會(huì)影響患者數(shù)據(jù)和系統(tǒng)可用性的問(wèn)題,提出將法醫(yī)學(xué)原理和概念集成到醫(yī)療CPS的設(shè)計(jì)和開(kāi)發(fā)中,以增強(qiáng)組織的調(diào)查態(tài)勢(shì),并為進(jìn)一步完善醫(yī)療CPS調(diào)查的具體解決方案奠定了基礎(chǔ)。文獻(xiàn)[22]討論了遠(yuǎn)程調(diào)整醫(yī)療CPS醫(yī)療設(shè)備輸出和驅(qū)動(dòng)所必須解決的一些問(wèn)題,例如驗(yàn)證問(wèn)題。文獻(xiàn)[23]繪制了醫(yī)療CPS的抽象體系結(jié)構(gòu),以演示各種威脅建模選項(xiàng);還討論了可能的安全技術(shù)及其在安全醫(yī)療CPS設(shè)計(jì)中的適用性和實(shí)用性。以上研究多從醫(yī)療CPS內(nèi)部出發(fā),通過(guò)優(yōu)化醫(yī)療設(shè)備、系統(tǒng)交互接口、模型設(shè)計(jì)等方面提高醫(yī)療CPS的可靠性和安全性,并未考慮醫(yī)療CPS的網(wǎng)絡(luò)化發(fā)展。內(nèi)部的優(yōu)化無(wú)法打破本地資源的局限性,只有開(kāi)放、共享、協(xié)作才能更大限度地提高醫(yī)療CPS的可靠性。
3醫(yī)療CPS協(xié)作平臺(tái)
在傳統(tǒng)醫(yī)療模式下,醫(yī)生面對(duì)多并發(fā)癥疾病時(shí),通常開(kāi)展線上或線下的多學(xué)科聯(lián)合會(huì)診[24-25]。傳統(tǒng)模式通過(guò)靜態(tài)數(shù)據(jù)分享和語(yǔ)言溝通完成醫(yī)療決策,但人體是一個(gè)復(fù)雜的生理系統(tǒng),靜態(tài)數(shù)據(jù)的全面性不足,連續(xù)動(dòng)態(tài)的生理數(shù)據(jù)才更有臨床決策價(jià)值。醫(yī)療CPS的優(yōu)勢(shì)是對(duì)連續(xù)動(dòng)態(tài)數(shù)據(jù)的采集和分析,因此,需要構(gòu)建一個(gè)協(xié)作平臺(tái)以支持醫(yī)療CPS的深度協(xié)作與共享,從而彌補(bǔ)本地知識(shí)庫(kù)和專(zhuān)科醫(yī)生知識(shí)的局限性,進(jìn)一步提升醫(yī)療CPS的可靠性。
3.1平臺(tái)架構(gòu)設(shè)計(jì)
在醫(yī)療CPS內(nèi)部,患者的生理數(shù)據(jù)通過(guò)傳感設(shè)備實(shí)時(shí)采集,并存儲(chǔ)在臨床信息系統(tǒng)中。輔助決策系統(tǒng)讀取并判斷是否需要進(jìn)行多學(xué)科聯(lián)合治療。需要聯(lián)合治療的醫(yī)療CPS向協(xié)作平臺(tái)發(fā)送協(xié)作申請(qǐng),并通過(guò)平臺(tái)與1個(gè)或多個(gè)目標(biāo)醫(yī)療CPS開(kāi)展網(wǎng)絡(luò)協(xié)作。如圖1所示,平臺(tái)提供異構(gòu)系統(tǒng)對(duì)接、生理數(shù)據(jù)識(shí)別、網(wǎng)絡(luò)控制、消息管理和存儲(chǔ)等服務(wù)。醫(yī)療CPS通過(guò)平臺(tái)協(xié)作將網(wǎng)絡(luò)優(yōu)質(zhì)醫(yī)療資源加入到疾病的治療閉環(huán)中,提高了決策單元的可靠性。
3.2網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)
醫(yī)療CPS協(xié)作是為完成多學(xué)科聯(lián)合治療任務(wù)而在網(wǎng)絡(luò)上進(jìn)行分布式計(jì)算的過(guò)程。網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)與協(xié)作效率密切相關(guān)。平臺(tái)網(wǎng)絡(luò)中存在大量的異構(gòu)醫(yī)療CPS,且分布不均。新接入網(wǎng)絡(luò)的醫(yī)療CPS通常與擁有優(yōu)質(zhì)醫(yī)療資源的醫(yī)療CPS建立連接。隨著時(shí)間的推移,平臺(tái)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)與無(wú)標(biāo)度網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)一致。這樣大規(guī)模的復(fù)雜系統(tǒng)需要合理的網(wǎng)絡(luò)架構(gòu)來(lái)優(yōu)化網(wǎng)絡(luò)資源管理。軟件定義網(wǎng)絡(luò)(SoftwareDefinedNetwork,SDN)架構(gòu)具有控制靈活、資源分配靈活的優(yōu)點(diǎn),但無(wú)法滿(mǎn)足大規(guī)模網(wǎng)絡(luò)控制需求。協(xié)作平臺(tái)網(wǎng)絡(luò)架構(gòu)在SDN三層網(wǎng)絡(luò)架構(gòu)的基礎(chǔ)上,將控制層進(jìn)行分級(jí)處理,如圖2所示,控制層分為低級(jí)控制區(qū)和高級(jí)控制區(qū)。低級(jí)控制區(qū)的控制器控制聚類(lèi)內(nèi)的連續(xù)動(dòng)態(tài)數(shù)據(jù)傳輸。高級(jí)控制區(qū)的控制器控制跨聚類(lèi)連續(xù)動(dòng)態(tài)數(shù)據(jù)傳輸。應(yīng)用層是用戶(hù)需求和協(xié)作平臺(tái)之間的交互。物理層由支撐平臺(tái)運(yùn)行的硬件設(shè)備組成。
4網(wǎng)絡(luò)控制策略?xún)?yōu)化
網(wǎng)絡(luò)控制指標(biāo)通常包括控制器負(fù)載、平均通信時(shí)延和孤立節(jié)點(diǎn)數(shù)??刂破髫?fù)載是控制器控制范圍內(nèi)的節(jié)點(diǎn)數(shù)量,優(yōu)化的目標(biāo)是使控制器之間的負(fù)載差異最小化,避免資源浪費(fèi)。平均通信時(shí)延是節(jié)點(diǎn)和控制器之間的平均通信時(shí)間,孤立節(jié)點(diǎn)數(shù)是需要跨聚類(lèi)通信的節(jié)點(diǎn)數(shù)量,兩者值越小,通信的代價(jià)越小。
4.1低級(jí)控制器部署
4.1.1問(wèn)題模型。假設(shè)網(wǎng)絡(luò)拓?fù)浣殛P(guān)系圖Gswitch=〈S,E〉,S是網(wǎng)絡(luò)內(nèi)醫(yī)療CPS的集合,E是醫(yī)療CPS間鏈路的集合。如果網(wǎng)絡(luò)被劃分為k個(gè)聚類(lèi),每個(gè)聚類(lèi)由一個(gè)低級(jí)控制器控制,則低級(jí)控制器的數(shù)量為k。假設(shè)網(wǎng)絡(luò)內(nèi)包含n個(gè)醫(yī)療CPS,則醫(yī)療CPS的集合表示為S={s1,s2,…,sn},低級(jí)控制器的集合表示C={c1,c2,…,ck},低級(jí)控制器與醫(yī)療CPS之間的通信時(shí)延表示為τ,τ=1v∑ni=1d(C(si),si),其中d(C(si),si)表示第i個(gè)醫(yī)療CPS與聚類(lèi)內(nèi)低級(jí)控制器的通信距離,v是速度參數(shù),i=1,2,…,n。低級(jí)控制器j的負(fù)載表示為Γj,是其控制聚類(lèi)內(nèi)醫(yī)療CPS的數(shù)量之和,所有低級(jí)控制器的平均負(fù)載表示為Γaverage。孤立節(jié)點(diǎn)的數(shù)量為m,σ表示低級(jí)控制器負(fù)載的均衡度。低級(jí)控制器部署是一個(gè)多目標(biāo)優(yōu)化問(wèn)題,目標(biāo)函數(shù)表示為:Fmin=(τ,σ,m)=P+Q+min(m)(1)P=min∑ki=11v×ni∑nij=1d(C(si),si)()()(2)Q=min1k∑kj=1(∑Γj-Γaverage)2()(3)4.1.2HCD算法。網(wǎng)絡(luò)具有無(wú)標(biāo)度網(wǎng)絡(luò)特性,醫(yī)療CPS分布符合冪律分布,即醫(yī)療CPS越密集,需要部署的低級(jí)控制器數(shù)量越多。HCD(HoneyCombDerivation)算法是在網(wǎng)絡(luò)拓?fù)渖线M(jìn)行蜂窩衍生。蜂窩衍生的方法是采用正六邊形的蜂窩網(wǎng)格作為衍生單位。網(wǎng)絡(luò)內(nèi)選擇一個(gè)醫(yī)療CPS節(jié)點(diǎn),并以該節(jié)點(diǎn)為初始點(diǎn),邊長(zhǎng)為r的正六邊形作為初始蜂窩網(wǎng)格,以初始蜂窩網(wǎng)格為中心,向6個(gè)方向分別衍生6個(gè)蜂窩網(wǎng)格,直到所有的醫(yī)療CPS被蜂窩網(wǎng)格覆蓋。蜂窩網(wǎng)絡(luò)被廣泛采用源于一個(gè)數(shù)學(xué)結(jié)論,即以相同半徑的圓形覆蓋平面,當(dāng)圓心處于蜂窩網(wǎng)格的格點(diǎn)時(shí)所用圓的數(shù)量最少,即使用最少的控制器可以覆蓋最大面積的圖形。雖然在通信中使用圓形來(lái)表述實(shí)踐要求通常是合理的,但出于節(jié)約設(shè)備構(gòu)建成本的考慮,蜂窩網(wǎng)格是最好的選擇。蜂窩衍生完成后,記錄每個(gè)蜂窩網(wǎng)格內(nèi)醫(yī)療CPS的總數(shù)并將其記為該蜂窩網(wǎng)格的度數(shù),再根據(jù)度數(shù)進(jìn)行優(yōu)化組合,形成醫(yī)療CPS聚類(lèi)。每個(gè)醫(yī)療CPS聚類(lèi)的中心網(wǎng)格部署低級(jí)控制器。圖3顯示了HCD算法的4個(gè)主要步驟,分別為蜂窩衍生、蜂窩標(biāo)記、節(jié)點(diǎn)聚類(lèi)和聚類(lèi)優(yōu)化。
4.2高級(jí)控制器部署
4.2.1問(wèn)題模型。高級(jí)控制器部署在低級(jí)控制器部署完成的基礎(chǔ)上進(jìn)行。低級(jí)控制器部署為高級(jí)控制器部署提供了基礎(chǔ)的網(wǎng)格分布圖,但CCD算法重新進(jìn)行網(wǎng)格度數(shù)計(jì)算,僅考慮低級(jí)控制器數(shù)量及其負(fù)載。假設(shè)蜂窩的度數(shù)表示為L(zhǎng)={l1,l2,…,ln},如果一個(gè)蜂窩網(wǎng)格僅包含醫(yī)療CPS,則l1=0,否則l1=Γj=∑Lj,Lj是低級(jí)控制器j所在聚類(lèi)內(nèi)醫(yī)療CPS數(shù)量。σ是高級(jí)控制器負(fù)載的均衡度,σ=1k∑kj=1,Γaverage是高級(jí)控制器的平均負(fù)載,m是孤立節(jié)點(diǎn)的數(shù)量,τ是各高級(jí)控制器與其聚類(lèi)內(nèi)低級(jí)控制器的通信時(shí)延總和,τ=1v∑ki=1d(C(ci),ci)。高級(jí)控制器部署的目標(biāo)函數(shù)表示為:Fmin(τ,σ,m)=A+B+min(m)(4)A=min∑ki=11v×ni∑nij=1d(C(sj),sj)()()(5)B=min1k∑ki=1(∑Γj-Γaverage)2()(6)4.2.2CCD算法。CCD(CooperativeControllerDeployment)算法根據(jù)蜂窩距離來(lái)對(duì)低級(jí)控制器進(jìn)行聚類(lèi),由于低級(jí)控制器較醫(yī)療CPS數(shù)量少,位置更為分散,過(guò)多強(qiáng)調(diào)負(fù)載的優(yōu)化會(huì)導(dǎo)致平均通信時(shí)延的增加。因此,CCD算法在優(yōu)化平均通信時(shí)延的基礎(chǔ)上兼顧負(fù)載均衡。算法首先根據(jù)低級(jí)控制器的部署對(duì)蜂窩網(wǎng)格進(jìn)行重新標(biāo)記。如果蜂窩網(wǎng)格中沒(méi)有部署低級(jí)控制器,則li=0,否則li不為0。選取k個(gè)距離分散的網(wǎng)格作為初始中心網(wǎng)格,計(jì)算每個(gè)網(wǎng)格與k個(gè)中心網(wǎng)格的距離,并與距離最近的中心網(wǎng)格聚為一類(lèi)。所有網(wǎng)格完成聚類(lèi)后,計(jì)算每個(gè)聚類(lèi)負(fù)載,將大于負(fù)載閾值的網(wǎng)格重新分配至與負(fù)載聚類(lèi)中最近的聚類(lèi),直到所有聚類(lèi)負(fù)載均小于負(fù)載閾值。各聚類(lèi)中心點(diǎn)所在的網(wǎng)格部署高級(jí)控制器。
5仿真實(shí)驗(yàn)
5.1HCD算法仿真
實(shí)驗(yàn)旨在對(duì)比K-means算法和HCD算法在低級(jí)控制器部署過(guò)程中對(duì)平均通信時(shí)延、控制器負(fù)載和孤立節(jié)點(diǎn)數(shù)量3個(gè)指標(biāo)的優(yōu)化情況。假設(shè)實(shí)驗(yàn)拓?fù)涫且粋€(gè)由20個(gè)節(jié)點(diǎn)組成的BA網(wǎng)絡(luò)。采用Python工具進(jìn)行仿真,仿真結(jié)果如圖4和圖5所示。以k=3為例,HCD算法將節(jié)點(diǎn)2,6,8,10,13聚為一類(lèi);節(jié)點(diǎn)1,3,4,5,7,9,11聚為一類(lèi);節(jié)點(diǎn)12,14,15,16,17,18,19,20聚為一類(lèi)。K-means算法將節(jié)點(diǎn)1,2,3,4,5,6,7,8,9,10,13聚為一類(lèi);節(jié)點(diǎn)11為一類(lèi);節(jié)點(diǎn)12,14,15,16,17,18,19,20聚為一類(lèi)。根據(jù)HCD算法的聚類(lèi)結(jié)果,低級(jí)控制器分別部署在節(jié)點(diǎn)6,7,15。根據(jù)K-means算法的聚類(lèi)結(jié)果,低級(jí)控制器分別部署在節(jié)點(diǎn)2,11,15。表1分別對(duì)比了k=3和k=4時(shí)低級(jí)控制器部署的各類(lèi)指標(biāo),結(jié)果顯示K-means算法作為經(jīng)典的聚類(lèi)算法,局限于優(yōu)化平均通信時(shí)延和孤立節(jié)點(diǎn)兩個(gè)指標(biāo),忽略了控制器負(fù)載均衡問(wèn)題;HCD算法在犧牲較少平均通信時(shí)延的情況下,大幅度提升了低級(jí)控制器的負(fù)載均衡,且通過(guò)聚類(lèi)的優(yōu)化剔除了孤立通信節(jié)點(diǎn)。在低級(jí)控制器部署(k=3)完成基礎(chǔ)上,均采用K-means算法對(duì)低級(jí)控制器進(jìn)行聚類(lèi),如圖6所示。表2列出了部署2臺(tái)高級(jí)控制器的指標(biāo)對(duì)比情況,顯然HCD算法也間接優(yōu)化了高級(jí)控制器部署的指標(biāo)。
5.2CCD算法仿真
實(shí)驗(yàn)旨在對(duì)比K-means算法、HCD算法和CCD算法在高級(jí)控制器部署過(guò)程中對(duì)平均通信時(shí)延、控制器負(fù)載和孤立節(jié)點(diǎn)數(shù)量3個(gè)指標(biāo)的優(yōu)化情況。假設(shè)實(shí)驗(yàn)拓?fù)涫且粋€(gè)由20個(gè)節(jié)點(diǎn)組成的BA網(wǎng)絡(luò),低級(jí)控制器數(shù)量k=8,分別部署在HCD算法的聚類(lèi)結(jié)果顯示,部署在節(jié)點(diǎn)5,6,8的低級(jí)控制器聚為一類(lèi),部署在節(jié)點(diǎn)11,12,14的低級(jí)控制器聚為一類(lèi),部署在節(jié)點(diǎn)15,16的低級(jí)控制器聚為一類(lèi)。CCD算法的聚類(lèi)結(jié)果顯示,部署在節(jié)點(diǎn)5,6,8的低級(jí)控制器聚為一類(lèi),部署在節(jié)點(diǎn)11,14的低級(jí)控制器聚為一類(lèi),部署在節(jié)點(diǎn)12,15,16的低級(jí)控制器聚為一類(lèi)。K-means算法的聚類(lèi)結(jié)果中,部署在節(jié)點(diǎn)5,6,8的低級(jí)控制器聚為一類(lèi),部署在節(jié)點(diǎn)11的低級(jí)控制器聚為一類(lèi),部署在節(jié)點(diǎn)12,14,15,16的低級(jí)控制器聚為一類(lèi)。根據(jù)3種算法的聚類(lèi)結(jié)果,高級(jí)控制器分別部署在節(jié)點(diǎn)2,9,17。CCD算法在聚類(lèi)節(jié)點(diǎn)較少的情況下,較HCD算法和K-means算法在指標(biāo)的優(yōu)化上效果最好,具體指標(biāo)對(duì)比見(jiàn)表3。6結(jié)束語(yǔ)醫(yī)療CPS是醫(yī)院應(yīng)用的重要系統(tǒng)之一。但醫(yī)學(xué)學(xué)科的細(xì)化和知識(shí)庫(kù)的局限性,使醫(yī)療CPS應(yīng)對(duì)多并發(fā)癥疾病治療存在可靠性不足問(wèn)題。文中提出了醫(yī)療CPS協(xié)作架構(gòu)設(shè)計(jì),并考慮到生理數(shù)據(jù)的連續(xù)動(dòng)態(tài)性和醫(yī)療CPS對(duì)決策及時(shí)性要求較高,設(shè)計(jì)了協(xié)作網(wǎng)絡(luò)的控制架構(gòu),提出了HCD算法和CCD算法對(duì)網(wǎng)絡(luò)節(jié)點(diǎn)進(jìn)行聚類(lèi)以輔助兩級(jí)控制器的部署,從而提升協(xié)作效率。實(shí)驗(yàn)對(duì)比了HCD算法、CCD算法和K-means算法對(duì)目標(biāo)函數(shù)的優(yōu)化情況,結(jié)果表明HCD算法和CCD算法對(duì)兩級(jí)控制器的部署均優(yōu)于K-means算法。醫(yī)療CPS網(wǎng)絡(luò)化、協(xié)同化發(fā)展是大數(shù)據(jù)時(shí)代醫(yī)院信息化發(fā)展的趨勢(shì),提高醫(yī)療決策可靠性也契合了國(guó)家精準(zhǔn)醫(yī)療戰(zhàn)略的需求。醫(yī)療CPS協(xié)作平臺(tái)設(shè)計(jì)和協(xié)作網(wǎng)絡(luò)控制策略?xún)?yōu)化,為醫(yī)療CPS整合優(yōu)質(zhì)醫(yī)療資源,提升決策可靠性提供了實(shí)踐方案。異構(gòu)系統(tǒng)之間的協(xié)同問(wèn)題與協(xié)作同步問(wèn)題,將是后續(xù)的研究工作。
作者:劉麗 李仁發(fā) 單位:中南大學(xué)湘雅三醫(yī)院 湖南大學(xué)信息科學(xué)與工程學(xué)院
級(jí)別:部級(jí)期刊
榮譽(yù):中國(guó)優(yōu)秀期刊遴選數(shù)據(jù)庫(kù)
級(jí)別:省級(jí)期刊
榮譽(yù):Caj-cd規(guī)范獲獎(jiǎng)期刊
級(jí)別:統(tǒng)計(jì)源期刊
榮譽(yù):中國(guó)優(yōu)秀期刊遴選數(shù)據(jù)庫(kù)
級(jí)別:部級(jí)期刊
榮譽(yù):中國(guó)優(yōu)秀期刊遴選數(shù)據(jù)庫(kù)
級(jí)別:部級(jí)期刊
榮譽(yù):Caj-cd規(guī)范獲獎(jiǎng)期刊