公務(wù)員期刊網(wǎng) 精選范文 淺談對數(shù)學(xué)建模的認識范文

淺談對數(shù)學(xué)建模的認識精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的淺談對數(shù)學(xué)建模的認識主題范文,僅供參考,歡迎閱讀并收藏。

淺談對數(shù)學(xué)建模的認識

第1篇:淺談對數(shù)學(xué)建模的認識范文

【關(guān)鍵詞】計算機;高等數(shù)學(xué);教學(xué)改革;數(shù)學(xué)建模

1.高等數(shù)學(xué)與計算機學(xué)科發(fā)展

有人說,計算機技術(shù)的發(fā)展可以省去學(xué)習(xí)數(shù)學(xué)的麻煩,即便是很多專業(yè)計算機教師也抱有同樣的想法。然而,對于計算機應(yīng)用領(lǐng)域及實踐中,計算機技術(shù)確實給很多從業(yè)者帶來了便捷與高效,但計算機技術(shù)不等于數(shù)學(xué),更不能替代數(shù)學(xué)。從高等數(shù)學(xué)教學(xué)實踐來看,對于我們常見的數(shù)學(xué)概念,如比率、概率、圖像、邏輯、誤差、機會,以及程序等知識的認識,很多行業(yè)都在進行數(shù)字化、數(shù)量化轉(zhuǎn)變,對數(shù)學(xué)知識的應(yīng)用也日益廣泛。從這些應(yīng)用中,數(shù)學(xué)理論及知識,尤其是數(shù)學(xué)基本理論研究就顯得更為重要。數(shù)學(xué),在數(shù)學(xué)知識的應(yīng)用中,更需要從練習(xí)中來提升對數(shù)學(xué)知識及概念的理解,也需要通過練習(xí)來提升運算能力。如果對數(shù)學(xué)概念及方法應(yīng)用的不過,對數(shù)學(xué)單調(diào)性的知識缺乏深刻的認識,就會影響數(shù)學(xué)知識在實踐應(yīng)用中出現(xiàn)偏差。計算機技術(shù)的出現(xiàn),尤其是程序化語言的應(yīng)用,使得數(shù)學(xué)知識在表達與反映中能夠依據(jù)不同的應(yīng)用靈活有效、準確的運算,從而減少了不必要的驗證,也提升了數(shù)學(xué)在各行業(yè)中的應(yīng)用效率。

數(shù)學(xué)軟件學(xué)科的發(fā)展,成為計算機重要的輔助教學(xué)的熱門領(lǐng)域,也使得計算機技術(shù)能夠發(fā)揮其數(shù)學(xué)應(yīng)用能力。在傳統(tǒng)的數(shù)學(xué)教學(xué)中,邏輯與直觀、抽象與具體始終是研究的矛盾主體,如有些太簡單的例子往往無法進行全面的計算;有些復(fù)雜的例子又需要更多的計算量。在課堂表現(xiàn)與講解中,對于理性與感性知識的認知,學(xué)生缺乏有效的理解和應(yīng)用,而強大的計算機運算功能卻能夠直觀的表達和彌補這些缺陷,并依托具體的演示過程中來營造概念間的差異性,幫助學(xué)生從中領(lǐng)會知識及方法。在計算機的輔助教學(xué)下,教師利用對數(shù)學(xué)理論課題或應(yīng)用課題,從鮮活的思維及形象的表達上借助于軟件來展現(xiàn),讓學(xué)生從失敗與成功中得到知識的應(yīng)用體驗,從而將被動的知識學(xué)習(xí)轉(zhuǎn)變?yōu)橹鲃拥膮⑴c實踐,更有助于通過實踐來激發(fā)學(xué)生的創(chuàng)新精神。這種將數(shù)學(xué)教學(xué)思維與邏輯與計算機技術(shù)的融合,便于從教學(xué)中調(diào)整教學(xué)目標,依據(jù)學(xué)生所需知識及專業(yè)需求來分配側(cè)重點。數(shù)學(xué)建模就是從數(shù)學(xué)學(xué)科與計算機學(xué)科的融合與實踐中幫助學(xué)生協(xié)作學(xué)習(xí),提升自身的能力。

2.信息技術(shù)是高等數(shù)學(xué)應(yīng)用的產(chǎn)物

現(xiàn)代信息技術(shù)的發(fā)展及應(yīng)用無處不在,對數(shù)學(xué)知識的滲透也是日益深入。當前,各行業(yè)在多種協(xié)作、多種專業(yè)融合中,借助于先進的信息技術(shù)都可以實現(xiàn)暢通的表達與物化。如天氣預(yù)報技術(shù)、衛(wèi)星電視技術(shù)、網(wǎng)絡(luò)通訊技術(shù)等都需要從數(shù)學(xué)理論知識的應(yīng)用中,尤其是對數(shù)學(xué)建模方法的應(yīng)用來實現(xiàn)。高等數(shù)學(xué)是關(guān)于模式與秩序的學(xué)問,也是幫助我們認識世界的有效方法。在經(jīng)濟社會發(fā)展的今天,對于數(shù)學(xué)及數(shù)學(xué)知識的表達都與其科研綜合能力息息相關(guān)。可以這么說,對于今天的數(shù)學(xué),尤其是高等數(shù)學(xué)基礎(chǔ)理論知識,都能夠從生活及生產(chǎn)中找到鮮活的應(yīng)用實例,如人口理論知識、神經(jīng)網(wǎng)絡(luò)、基因模型破譯等都離不開高等數(shù)學(xué)基礎(chǔ)理論的支撐。數(shù)學(xué)作為一種能力,作為對社會發(fā)展起推動作用的主要動力,只有從數(shù)學(xué)知識及數(shù)學(xué)能力的訓(xùn)練中,來駕馭好數(shù)學(xué)知識的有效應(yīng)用,來促進和改善我們的生活和社會。

3.數(shù)學(xué)建模嵌入與高等數(shù)學(xué)教改的深入?yún)f(xié)作

當前高等數(shù)學(xué)改革,將改革的重點放在轉(zhuǎn)變理論教學(xué)重點的實踐中,重理論輕實踐是改革重點,尤其是對于非數(shù)學(xué)專業(yè)學(xué)生來說,更應(yīng)該從凸顯數(shù)學(xué)的應(yīng)用能力和應(yīng)用數(shù)學(xué)能力為主要內(nèi)容,從解決具體的數(shù)學(xué)問題中來幫助學(xué)生提升數(shù)學(xué)能力?,F(xiàn)代數(shù)學(xué)在教學(xué)中主要體現(xiàn)四個特點:一是“集合論”作為數(shù)學(xué)各分支教學(xué)的共同基礎(chǔ),如代數(shù)結(jié)構(gòu)、拓撲結(jié)構(gòu)、序結(jié)構(gòu)等,都是重點教學(xué)內(nèi)容;二是數(shù)學(xué)分支內(nèi)在相關(guān)性更加緊密,尤其是對于純數(shù)學(xué)知識的抽象化,分科范圍及深度更加細化;三是計算機技術(shù)與數(shù)學(xué)教學(xué)的關(guān)聯(lián),從數(shù)學(xué)知識與數(shù)學(xué)理論的講解上應(yīng)用計算機技術(shù),從而實現(xiàn)對方程的數(shù)值解、對各類應(yīng)用領(lǐng)域的促進,如人工智能化、數(shù)據(jù)處理、機器證明等;四是數(shù)學(xué)與其他學(xué)科間的融合與滲透,對于數(shù)學(xué)知識在行業(yè)內(nèi)的應(yīng)用,已經(jīng)成為數(shù)學(xué)基礎(chǔ)理論與社會學(xué)科正向交流的主要方向,與經(jīng)濟學(xué)的融合、與生物學(xué)的融合,與考古學(xué)的融合、與心理學(xué)等等融合更加深入。由此可見,對于近代數(shù)學(xué)及數(shù)學(xué)理論的深入研究,從數(shù)學(xué)知識體系的分解與延伸中,我們可以發(fā)現(xiàn)數(shù)學(xué)已經(jīng)成為現(xiàn)代社會重要的基礎(chǔ)理論。而掌握的知識越多,對所研究的領(lǐng)域促進越大,也只有從數(shù)學(xué)的學(xué)習(xí)中來掌握必要的數(shù)學(xué)基礎(chǔ)理論及應(yīng)用,才能夠更好的發(fā)揮數(shù)學(xué)知識的潛能,促進高等數(shù)學(xué)在其他領(lǐng)域的廣泛應(yīng)用。數(shù)學(xué)建模思想及數(shù)學(xué)建模方法的學(xué)習(xí),將日常的、專業(yè)的學(xué)科問題與計算機技術(shù)進行關(guān)聯(lián),以尋求更好、更快的解決方案。

大學(xué)階段高等數(shù)學(xué)教育應(yīng)該轉(zhuǎn)變過去對傳統(tǒng)數(shù)學(xué)理論的偏重傾向,要從數(shù)學(xué)課程的應(yīng)用上,引入建模思想,將數(shù)學(xué)課程的“精講多練”與數(shù)學(xué)建模融合在一起,通過多次迭代、優(yōu)化模型來改進數(shù)學(xué)模型的應(yīng)用方法,從而融會貫通,幫助學(xué)生利用好數(shù)學(xué)能力。作為最有效的高等數(shù)學(xué)應(yīng)用方式之一,利用數(shù)學(xué)建模來把握教學(xué)內(nèi)容,并從練習(xí)時間中把握數(shù)學(xué)應(yīng)用與專業(yè)學(xué)科之間的關(guān)系,促進學(xué)生解決學(xué)習(xí)問題、思考問題。傳統(tǒng)的數(shù)學(xué)教學(xué)多以習(xí)題和基礎(chǔ)知識為重點,特別是新生在學(xué)習(xí)數(shù)學(xué)時,對于基礎(chǔ)知識的講解與練習(xí)一直是教學(xué)的重點。課堂教學(xué)實踐也是圍繞基礎(chǔ)定義、定理來展開。計算機技術(shù)在高等數(shù)學(xué)實踐中的應(yīng)用,將數(shù)學(xué)軟件的應(yīng)用實現(xiàn)了跨學(xué)科應(yīng)用,還能夠從傳統(tǒng)的數(shù)學(xué)教學(xué)模式中,轉(zhuǎn)變學(xué)生對數(shù)學(xué)知識的積累和適應(yīng),以豐富有趣的建模實踐來提升學(xué)生的學(xué)習(xí)興趣,增強學(xué)生對數(shù)學(xué)理論知識的掌握能力。在高等數(shù)學(xué)教改中引入數(shù)學(xué)建模嵌入,以高等數(shù)學(xué)應(yīng)用為主體來開發(fā)學(xué)生的學(xué)生潛能,并從中來解決高等數(shù)學(xué)教學(xué)難題。

4.引入高等數(shù)學(xué)建模嵌入的時機選擇

教育技術(shù)與教育水平存在一定的關(guān)聯(lián),從高等數(shù)學(xué)教學(xué)目標來看,對于數(shù)學(xué)建模嵌入時機的選擇是關(guān)鍵。有個小朋友問媽媽,“為什么2+2=4”,媽媽回答“左手兩個指頭,右手兩個指頭,你數(shù)一數(shù),一共有幾個”。小朋友數(shù)完后說“4個”,接著又問“4是什么玩意兒呢”。媽媽無言以對。對于“何為4”的回答,這是個嚴肅的數(shù)學(xué)問題,對于知識的客觀認識,撇開具體的應(yīng)用及環(huán)境,對于其中的內(nèi)涵及價值又該如何界定?可見,對于數(shù)學(xué)教學(xué)實踐,掌握必要的數(shù)學(xué)基本理論與定義,這個過程是可以通過建立數(shù)學(xué)模型來實現(xiàn),并從建模嵌入中來加深對概念的理解。如在高等數(shù)學(xué)導(dǎo)數(shù)及定積分知識的學(xué)習(xí)中,通過建模來告訴學(xué)生數(shù)學(xué)知識在解決具體問題中的應(yīng)用,并利用計算機技術(shù)來從中加深認識,掌握必要的工具。數(shù)學(xué)建模思想及嵌入實施,不僅是解決數(shù)學(xué)問題的需要,也是學(xué)習(xí)、探索、發(fā)現(xiàn)數(shù)學(xué)規(guī)律的需要,適時有效的嵌入數(shù)學(xué)建模,既增強了數(shù)學(xué)教學(xué)的學(xué)術(shù)性,也從模型建立中來培養(yǎng)學(xué)生的數(shù)學(xué)思維能力、數(shù)學(xué)應(yīng)用能力。

5.結(jié)語

無論是課程的改革與建設(shè),還是軟件的研制與試用,數(shù)學(xué)教育都是基礎(chǔ)的研究課題之一。建模理論與應(yīng)用,可以從教學(xué)實踐中通過計算機技術(shù)、軟件技術(shù)來豐富課堂教學(xué),提升學(xué)生的數(shù)學(xué)應(yīng)用意識和能力。

【參考文獻】

第2篇:淺談對數(shù)學(xué)建模的認識范文

論文摘要: 本文從我校數(shù)學(xué)建模競賽推進數(shù)學(xué)建模課程開設(shè)的成功經(jīng)驗,淺淡了數(shù)學(xué)建模促進大學(xué)生能力的培養(yǎng)。

隨著科學(xué)技術(shù)的迅速發(fā)展和計算機的日益普及,數(shù)學(xué)的應(yīng)用越來越廣泛和深入,數(shù)學(xué)科學(xué)的地位發(fā)生了巨大的變化,它正在從國民經(jīng)濟和科技的后臺走到了前沿。

把數(shù)學(xué)與客觀問題聯(lián)系起來的紐帶,首先是數(shù)學(xué)建模。應(yīng)用數(shù)學(xué)去解決各類實際問題,首先是建立數(shù)學(xué)模型。數(shù)學(xué)建模是聯(lián)系數(shù)學(xué)與實際問題的橋梁,是數(shù)學(xué)在各個領(lǐng)域廣泛應(yīng)用的媒介,是數(shù)學(xué)科學(xué)技術(shù)轉(zhuǎn)化的主要途徑,數(shù)學(xué)建模在科學(xué)技術(shù)發(fā)展中的重要作用越來越受到數(shù)學(xué)界和工程界的普遍重視,它已成為現(xiàn)代科技工作者必備的重要能力之一。

一、 以競賽推進數(shù)學(xué)建模課程化

數(shù)學(xué)建模作為一門嶄新的課程在20世紀80年代進入我國高校,蕭樹鐵先生1983年在清華大學(xué)首次為本科生講授數(shù)學(xué)模型課程,他是我國高校開設(shè)數(shù)學(xué)模型課程的創(chuàng)始人,1987年由姜啟源教授編寫了我國第一本數(shù)學(xué)建模教材。在八十年代后期開設(shè)數(shù)學(xué)建模選修課或必修課只是少數(shù)老牌大學(xué)。但自1992年由中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會舉辦全國大學(xué)生數(shù)學(xué)建模競賽( 94年起由國家教委高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會共同舉辦)以來,隨著參加競賽高校的學(xué)生增加,各高校相繼開設(shè)了數(shù)學(xué)建模課程。2008 年全國有31個省/市/自治區(qū)(包括香港)1023所院校、12846個隊(其中甲組10384隊、乙組2462隊)、3萬8千多名來自各個專業(yè)的大學(xué)生參加競賽。目前,在本科院校根據(jù)自己學(xué)校特點基本上開設(shè)數(shù)學(xué)課程。

我校從95年開始開設(shè)數(shù)學(xué)建模選修課,到97年學(xué)校決定在原有的基礎(chǔ)上,從97級學(xué)生開始,在部分專業(yè)開設(shè)數(shù)學(xué)建模必修課,并同時對其他專業(yè)開設(shè)數(shù)學(xué)建模選修課。最初開設(shè)選修課是因為參加數(shù)學(xué)建模競賽的需要,選修的學(xué)生數(shù)較少,而且必須是往年成績較優(yōu)的學(xué)生才允許選修。我們通過以競賽為平臺, 加強引導(dǎo)與指導(dǎo), 充分激發(fā)學(xué)生的學(xué)習(xí)興趣和熱情。而且通過數(shù)學(xué)建模競賽,促進了我校教學(xué)內(nèi)容、教學(xué)方法、教學(xué)手段的創(chuàng)新,參加過訓(xùn)練和競賽的學(xué)生們普遍感到,以往學(xué)多門課程的知識不如參加一次競賽集訓(xùn)學(xué)得全面和扎實。因為數(shù)學(xué)建模競賽需要全面掌握本領(lǐng)域相關(guān)知識, 在深入理解、領(lǐng)會前人智能精髓的基礎(chǔ)上, 敢于提出自己的想法和觀點。只有善于進行創(chuàng)造性地學(xué)習(xí)和運用知識, 善于對已知知識進行融會貫通, 注意知識積累的同時更注重對知識的處理和運用, 才能取得成功。隨著數(shù)學(xué)建模競賽在我校影響的增加,同時參加競賽過的學(xué)生能力的提高,要求選修數(shù)學(xué)建模課程的學(xué)生逐年增加?,使得開設(shè)數(shù)學(xué)建模必修課有了一定的群眾基礎(chǔ),同時開設(shè)數(shù)學(xué)建模課程的目的也轉(zhuǎn)向了競賽與普及相結(jié)合,以提高大學(xué)生的綜合素質(zhì)和實踐能力作為一個重要目標。目前,已在自動化、信息管理、統(tǒng)計、電子信息科學(xué)與技術(shù)、計算機、軟件、通信等專業(yè)的學(xué)生開設(shè)不同層次的數(shù)學(xué)建模必修課與限選課,同時仍然在全校開設(shè)不同層次的數(shù)學(xué)建模選修課。對于不同層次,理論教學(xué)學(xué)時分別為34、50、66學(xué)時,并輔以上機實踐訓(xùn)練,每年從當初幾十名學(xué)生到目前每年近2000名學(xué)生修讀此課。為了進一步提高實踐動手能力,在軟件工程、網(wǎng)絡(luò)工程、信息與計算科學(xué)、應(yīng)用數(shù)學(xué)專業(yè)開設(shè)數(shù)學(xué)建模課程設(shè)計,取得了比較明顯的效果。

為了讓信息與計算科學(xué)、應(yīng)用數(shù)學(xué)專業(yè)的學(xué)生能更好的應(yīng)用計算機工具和數(shù)學(xué)軟件來解決各種實際問題,從2001年開始我們開設(shè)了數(shù)學(xué)實驗課作為數(shù)學(xué)建模課程的補充和完善,并且目前面向全校開設(shè)數(shù)學(xué)實驗選修課。為了進一步推廣和普及數(shù)學(xué)建模,讓更多的學(xué)生了解和參與數(shù)學(xué)建模,在原開設(shè)多種課程基礎(chǔ)上,在學(xué)校以及教務(wù)部門的支持下,課程組于2000年起結(jié)合課程教學(xué)安排,在每年五月底舉辦全校大學(xué)生數(shù)學(xué)建模競賽。該項活動得到了全校學(xué)生的積極響應(yīng),2009年有152個組,456人參賽。我校數(shù)學(xué)建模教學(xué)已經(jīng)形成了多個品種、多種層次、多種方式的教學(xué)格局。

二、數(shù)學(xué)建模促進大學(xué)生能力的培養(yǎng)

數(shù)學(xué)建模活動包括數(shù)學(xué)建模課程、數(shù)學(xué)建模競賽和數(shù)學(xué)實驗課程等方面。建?;顒颖旧砭褪且豁梽?chuàng)造性的思維活動,它既具有一定的理論性又具有較大的實踐性;既要求思維的數(shù)量,還要求思維的深刻性和靈活性。著名數(shù)學(xué)家丁石孫副委員長對數(shù)學(xué)建?;顒咏o予了很高的評價,他說:“我們教了幾十年的數(shù)學(xué),曾經(jīng)花了很多力氣想使大家能夠認識到數(shù)學(xué)的重要性,但是我們沒有找到一個合適的方法,數(shù)學(xué)建?;顒邮且粋€很好的方法,使很多的學(xué)生包括他們的朋友都能夠認識到數(shù)學(xué)的真正用處”。李大潛院士也曾說過:“數(shù)學(xué)建模活動具有強大的生命力,并必將不斷發(fā)展、日臻完善”。很多高校從當初為了競賽的需要,但隨著對數(shù)學(xué)建模對學(xué)生能力培養(yǎng)的認識,數(shù)學(xué)教學(xué)改革的深入發(fā)展,許多普通高校都在積極思考,大膽探索,取得了許多可喜的成果。特別是對數(shù)學(xué)教學(xué)改革以數(shù)學(xué)建模為突破口,在教學(xué)體系、方法和內(nèi)容上都進行了實質(zhì)性的改革,已取得了突破性的成果。如改革教學(xué)內(nèi)容,教學(xué)與計算機結(jié)合,實行研討式教學(xué)等,這也為數(shù)學(xué)建模網(wǎng)絡(luò)教學(xué)奠定了很好的基礎(chǔ)。我校從1997年開始,我校將數(shù)學(xué)建模的教育從面向少數(shù)優(yōu)秀學(xué)生轉(zhuǎn)變?yōu)槊嫦蚋嗟钠毡閷W(xué)生。越來越多的學(xué)生從數(shù)學(xué)建模的學(xué)習(xí)中獲得了進步,使數(shù)學(xué)建模教學(xué)在大學(xué)生素質(zhì)培養(yǎng)中日益發(fā)揮著巨大的作用。

1.促進大學(xué)生邏輯思維能力與抽象思維能力的提高。建模是從實際問題到數(shù)學(xué)問題,從數(shù)學(xué)問題到數(shù)學(xué)解,從數(shù)學(xué)解到實際問題的解決,這一過程提高了大學(xué)生邏輯思維能力與抽象思維能力。

2. 促進大學(xué)生的適應(yīng)能力增強的。通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對于不同的實際問題,如何進行分析、推理、概括以及利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論到什么行業(yè),都能很快適應(yīng)需要。

3. 促進學(xué)生自學(xué)能力。由于數(shù)學(xué)模型實際問題的廣泛性,大學(xué)生在建模實踐中要用到的很多知識是學(xué)生以前沒有學(xué)過的,而且也沒有時間再由老師作詳細講解來補課,只能由教師講一講主要的思想方法,同學(xué)們通過自學(xué)及相互討論來進一步掌握。這就培養(yǎng)了學(xué)生的自學(xué)能力和分析綜合能力。他們走上工作崗位之后正是靠這種能力來不斷擴充和更新自己的知識。

4. 促進大學(xué)生相互協(xié)作能力。在數(shù)學(xué)建模學(xué)習(xí)過程中,有大量的數(shù)學(xué)模型不是單靠數(shù)學(xué)知識就能解決的,它需要跨學(xué)科、跨專業(yè)的知識綜合在一起才能解決,當今科學(xué)的發(fā)展也使得一個人再也沒有足夠精力去通曉每一門學(xué)科,這就需要具有不同知識結(jié)構(gòu)的人經(jīng)常在一起相互討論,從中受到啟發(fā)。數(shù)學(xué)建模集訓(xùn)、競賽提供了這一場所。三位同學(xué)在學(xué)習(xí)、集訓(xùn)、競賽過程是彼此磋商、團結(jié)合作、互相交流思想、共同解決問題,使得知識結(jié)構(gòu)互為補充,取長補短。這種能力、素質(zhì)的培養(yǎng)對他們的科學(xué)研究打下了良好的基礎(chǔ)。

5. 促進大學(xué)生分析、綜合和解決實際問題能力的培養(yǎng)。這是由數(shù)學(xué)建模的任務(wù),目的所決定的。建模過程大體都要經(jīng)過分析與綜合、抽象與概括、比較與類比、系統(tǒng)化與具體化的階段,其中分析與綜合是基礎(chǔ),抽象與概括是關(guān)鍵。而從數(shù)學(xué)解答與模型檢驗而言,要求大學(xué)生所學(xué)的數(shù)學(xué)知識與計算機知識還有其它方面知識綜合起來,動手去解決, 根據(jù)計算結(jié)果作出合理的解釋。通過實踐,明白學(xué)以致用,提高了分析、綜合與解決實際問題的能力。

6. 促進大學(xué)生的創(chuàng)造能力的提高。在數(shù)學(xué)建模實踐中,大多問題沒有現(xiàn)成的答案、沒有現(xiàn)成的模式,要靠充分發(fā)揮自己(和隊友)的創(chuàng)造性去解決。而面對一大堆資料、計算機軟件等,如何用于解決問題,也要充分發(fā)揮自己的創(chuàng)造性。數(shù)學(xué)建模對大學(xué)生的創(chuàng)造性的培養(yǎng)是很有好處的。

三、開設(shè)數(shù)學(xué)建模課程取得的效應(yīng)

數(shù)學(xué)建模活動十分有利于達到培養(yǎng)高素質(zhì)創(chuàng)新人才的育人目標。我校開設(shè)的數(shù)學(xué)建模課程,在師資水平、普及程度、特色內(nèi)容建設(shè)、校內(nèi)競賽以及全國競賽等幾個方面,在國內(nèi)同類院校中處于領(lǐng)先地位,特別是每年全國大學(xué)生數(shù)學(xué)建模競賽中,我校都取得了良好的成績,而且在全國也有一定的影響,得到全國競賽組委會專家的充分肯定。

在教學(xué)團隊建設(shè)方面取得明顯成效。從最初的4名教師,逐步擴大到涉及運籌與優(yōu)化、微分方程、概率論與數(shù)理統(tǒng)計、計算科學(xué)、最優(yōu)控制、計算機應(yīng)用等在數(shù)學(xué)建模中常用的學(xué)科方向的十多名教師,不僅解決了課程教學(xué)的需要,也促進了教師教學(xué)科研水平的提高。

在課程設(shè)置研究方面。根據(jù)我們這樣一類學(xué)校的實際情況,我們在不同專業(yè)的學(xué)生中開設(shè)了多種不同課時不同程度要求的數(shù)學(xué)建模課,滿足了各種不同程度不同水平的學(xué)生的需要。并在個別專業(yè)開設(shè)數(shù)學(xué)實驗必修課,同時面向全體開設(shè)了數(shù)學(xué)實驗選修課,把數(shù)學(xué)理論教學(xué)與數(shù)學(xué)軟件以及計算機實現(xiàn)進行了很好的結(jié)合,進一步豐富了數(shù)學(xué)建模教學(xué)的內(nèi)涵。以及在幾個不同專業(yè)中開設(shè)了數(shù)學(xué)建模課程設(shè)計環(huán)節(jié),有效地解決了大量一般學(xué)生如何加強數(shù)學(xué)實踐動手能力培養(yǎng)的問題。

在加強教學(xué)內(nèi)容與方法的研究與實踐方面,并取得明顯成效。除了選用合適的優(yōu)秀教材作為參考資料,更是投入精力編寫了適合我校的教學(xué)用書(即將在高教出版社出版)以及學(xué)生自主學(xué)習(xí)材料。數(shù)學(xué)建模教學(xué)的目的是能夠讓學(xué)生知道到什么地方找什么工具來解決什么樣的問題,我們堅持努力把研究式討論式的教學(xué)方法應(yīng)用到數(shù)學(xué)建模教學(xué)中去。2000年開始,每年結(jié)合春季的數(shù)學(xué)建模教學(xué)工作,在五月底進行校內(nèi)大學(xué)生數(shù)學(xué)建模競賽。該項活動推廣普及了數(shù)學(xué)建模教學(xué),使更多學(xué)生的研究能力和實踐動手能力得到了鍛煉,同時也有力促進了數(shù)學(xué)建模競賽活動在地方性普通院校中的開展,促進了競賽水平的提高。

在教學(xué)改革方面。將數(shù)學(xué)建模思想融入到其他工科數(shù)學(xué)課程中去,并且在教學(xué)中注意強調(diào)討論式教學(xué)以及學(xué)生的自主學(xué)習(xí)。

在同類院校樹范性方面。2003年,該課程被確定為浙江省首批省級精品課程。通過幾年的建設(shè),已初步建成較有特色的課程資源。充分提升了網(wǎng)絡(luò)工具的輻射作用,一方面加強了我校數(shù)學(xué)建模教學(xué)和競賽工作,以及數(shù)學(xué)建模課外活動的開展,另一方面對其他同類高校能起到較好輻射作用。另外,我校數(shù)學(xué)建模課程教師曾多次作為講課教師參加浙江省數(shù)學(xué)建模教練培訓(xùn)工作,多次應(yīng)邀到兄弟院校講課,也曾有多所院校到我校參觀調(diào)研。

通過幾年努力,完成數(shù)學(xué)建模教改研究項目《數(shù)學(xué)建模提高大學(xué)生綜合知識能力的探索與實踐》、《在工科院校中開設(shè)數(shù)學(xué)建模必修課和選修課的實踐》與《以學(xué)科競賽促進學(xué)生創(chuàng)新能力培養(yǎng)的“四維互動”模式研究與實踐》,三項成果皆獲得浙江省教學(xué)成果二等獎。組織學(xué)生數(shù)學(xué)建模課外活動的開展,申報“新苗人才計劃”、“創(chuàng)新杯”并取得成功。自1995 年組織學(xué)生參加全國大學(xué)生建模競賽以來,共獲全國一等獎25項,全國二等獎41項,浙江省獎一等獎42項,二等獎48項,三等獎41項。2006年至今共獲國際一等獎8項,國際二等獎14項。取得了省參賽高校與全國高校中的優(yōu)異成績。

通過參加數(shù)學(xué)建?;顒?,很多學(xué)生的自主學(xué)習(xí)和科研能力得到了顯著提高,在畢業(yè)設(shè)計、實習(xí)和研究生階段的學(xué)習(xí)中表現(xiàn)出了明顯的優(yōu)勢,得到用人單位和研究生導(dǎo)師的普遍認可。從2001年至今獲得“計算機世界獎學(xué)金”十幾位學(xué)生中,清一色在數(shù)學(xué)建模競賽中取得優(yōu)異成績。而且隨著數(shù)學(xué)建?;顒拥牟粩嗌钊腴_展,各級領(lǐng)導(dǎo)和各行業(yè)的用人單位逐漸對數(shù)學(xué)建模在實際中的應(yīng)用和人才培養(yǎng)中的地位和作用都有了新的認識。目前,數(shù)學(xué)建?;顒釉谖倚5拈_展,得到了越來越多同學(xué)的歡迎。數(shù)學(xué)建模活動不斷走向深入,由階段性轉(zhuǎn)向日常教學(xué)活動。在教學(xué)方面,由初期的只在優(yōu)秀學(xué)生與部分專業(yè)學(xué)生開設(shè)選修課,發(fā)展形成了多個品種、多種層次、教學(xué)格局;在競賽方面,由初期的只參加全國競賽,發(fā)展到既參加全國競賽,又將參加國際競賽,同時每年舉辦校內(nèi)競賽;在撰寫論文方面,由初期的只研究如何撰寫競賽論文,發(fā)展到現(xiàn)在與教師做課題與一般學(xué)術(shù)論文寫作,參加新苗人才計劃與創(chuàng)新杯等。

參考文獻

第3篇:淺談對數(shù)學(xué)建模的認識范文

【關(guān)鍵詞】 數(shù)學(xué)建模 建模方法 應(yīng)用

【中圖分類號】 G424 【文獻標識碼】 A 【文章編號】 1006-5962(2012)06(b)-0035-01

數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實際問題的一種強有力的數(shù)學(xué)手段。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言,把它表述為數(shù)學(xué)式子,也就是數(shù)學(xué)模型,然后用通過計算得到的模型結(jié)果來解釋實際問題,并接受實際的檢驗。這個建立數(shù)學(xué)模型的全過程就稱為數(shù)學(xué)建模。

1 數(shù)學(xué)模型的基本概述

數(shù)學(xué)模型就是對于一個特定的對象為了一個特定目標,根據(jù)特有的內(nèi)在規(guī)律,做出必要的簡化假設(shè),運用適當?shù)臄?shù)學(xué)工具,得到的一個數(shù)學(xué)結(jié)構(gòu)。數(shù)學(xué)結(jié)構(gòu)可以是 數(shù)學(xué)公式,算法、表格、圖示等。數(shù)學(xué)模型法就是把實際問題加以抽象概括,建立相應(yīng)的數(shù)學(xué)模型,利用這些模型來研究實際問題的一般數(shù)學(xué)方法。教師在應(yīng)用題教學(xué)中要滲透這種方法和思想,要注重并強調(diào)如何從實際問題中發(fā)現(xiàn)并抽象出數(shù)學(xué)問題,如何用數(shù)學(xué)模型(包括數(shù)學(xué)概念、公式、方程、不等式函數(shù)等)來表達實際問題。

2 數(shù)學(xué)建模的重要意義

電子計算機推動了數(shù)學(xué)建模的發(fā)展;電子計算機推動了數(shù)學(xué)建模的發(fā)展;數(shù)學(xué)建模在工程技術(shù)領(lǐng)域應(yīng)用廣泛。應(yīng)用數(shù)學(xué)去解決各類實際問題時,建立數(shù)學(xué)模型是重要關(guān)鍵。建立教學(xué)模型的過程,是把錯綜復(fù)雜的實際問題簡化、抽象為合理的數(shù)學(xué)結(jié)構(gòu)的過程。要通過調(diào)查、收集數(shù)據(jù)資料,觀察和研究實際對象的固有特征和內(nèi)在規(guī)律,抓住問題的主要矛盾,建立起反映實際問題的數(shù)量關(guān)系,然后利用數(shù)學(xué)的理論和方法去分折和解決問題。數(shù)學(xué)建模越來越受到數(shù)學(xué)界和工程界的普遍重視,已成為現(xiàn)代科技工作者重要的必備能力。

3 數(shù)學(xué)建模的主要方法和步驟:

3.1 數(shù)學(xué)建模的步驟可以分為幾個方面

(1)模型準備。首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特征。(2)模型假設(shè)。根據(jù)對象的特征和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設(shè),是建模至關(guān)重要的一步。(3)模型構(gòu)成。根據(jù)所作的假設(shè)分析對象的因果關(guān)系,利用對象的內(nèi)在規(guī)律和適當?shù)臄?shù)學(xué)工具,構(gòu)造各個量間的等式關(guān)系或其它數(shù)學(xué)結(jié)構(gòu)。(4)模型求解。可以采用解方程、畫圖形、證明定理、邏輯運算、數(shù)值運算等各種傳統(tǒng)的和近代的數(shù)學(xué)方法,特別是計算機技術(shù)。(5)模型分析。對模型解答進行數(shù)學(xué)上的分析,特別是誤差分析,數(shù)據(jù)穩(wěn)定性分析。

3.2 數(shù)學(xué)建模采用的主要方法包括

a.機理分析法。根據(jù)對客觀事物特性的認識從基本物理定律以及系統(tǒng)的結(jié)構(gòu)數(shù)據(jù)來推導(dǎo)出模型。(1)比例分析法:建立變量之間函數(shù)關(guān)系的最基本最常用的方法。(2)代數(shù)方法:求解離散問題(離散的數(shù)據(jù)、符號、圖形)的主要方法。(3)邏輯方法:是數(shù)學(xué)理論研究的重要方法,對社會學(xué)和經(jīng)濟學(xué)等領(lǐng)域的實際問題解決對策中得到廣泛應(yīng)用。(4)常微分方程:解決兩個變量之間的變化規(guī)律,關(guān)鍵是建立“瞬時變化率”的表達式。(5)偏微分方程:解決因變量與兩個以上自變量之間的變化規(guī)律。

b.數(shù)據(jù)分析法:通過對量測數(shù)據(jù)的統(tǒng)計分析,找出與數(shù)據(jù)擬合最好的模型

可以包括四個方法:(1)回歸分析法(2)時序分析法(3)回歸分析法(4)時序分析法

c.其他方法:例如計算機仿真(模擬)、因子試驗法和人工現(xiàn)實法

4 數(shù)學(xué)建模應(yīng)用

數(shù)學(xué)建模應(yīng)用就是將數(shù)學(xué)建模的方法從目前純競賽和純科研的領(lǐng)域引向商業(yè)化領(lǐng)域,解決社會生產(chǎn)中的實際問題,接受市場的考驗??梢陨孀闫髽I(yè)管理、市場分類、經(jīng)濟計量學(xué)、金融證券、數(shù)據(jù)挖掘與分析預(yù)測、物流管理、供應(yīng)鏈、信息系統(tǒng)、交通運輸、軟件制作、數(shù)學(xué)建模培訓(xùn)等領(lǐng)域,提供數(shù)學(xué)建模及數(shù)學(xué)模型解決方案及咨詢服務(wù),是對咨詢服務(wù)業(yè)和數(shù)學(xué)建模融合的一種全新的嘗試。例如北京交通大學(xué)在校學(xué)生組建了國內(nèi)第一支數(shù)學(xué)建模應(yīng)用團隊,積極地展開數(shù)學(xué)建模應(yīng)用推廣和應(yīng)用。

5 努力倡導(dǎo)數(shù)學(xué)建?;顒拥囊?/p>

5.1 積極開展數(shù)學(xué)建?;顒?鼓勵大家積極參與

為了提高學(xué)生的數(shù)學(xué)建模能力,學(xué)校可以開展數(shù)學(xué)建?;顒?可以是競賽制的和非競賽制的,應(yīng)當對成績比較優(yōu)秀的學(xué)生給予一定的獎勵,從而提高學(xué)生的積極性。建?;顒右幸?guī)章制度,要比較正規(guī)化,否則可能會達不到預(yù)期效果,而且建模過程競賽要保證公平、公開,保證學(xué)生不受干擾影響。

5.2 鞏固數(shù)學(xué)基礎(chǔ),激發(fā)學(xué)生學(xué)習(xí)興趣

首先數(shù)學(xué)建模需要扎實學(xué)生的數(shù)學(xué)基礎(chǔ),同時學(xué)生要具備較好的理論聯(lián)系實際的能力以及抽象能力,還有就是要激發(fā)學(xué)生的學(xué)習(xí)興趣,興趣是學(xué)習(xí)的最好老師,假設(shè)教學(xué)課堂中過于枯燥無味,學(xué)生容易產(chǎn)生厭倦情緒,不利于學(xué)習(xí)。數(shù)學(xué)建模過程本質(zhì)是比較有趣的過程,是對實際生活進行簡化的一個過程,生動和有實際價值的。鼓勵學(xué)生相互交流,促使學(xué)生用建模的思維方法去思考和解決生活中的實際問題,表現(xiàn)優(yōu)秀的同學(xué)可以適度給予獎勵評價。

總之,數(shù)學(xué)建模能力的培養(yǎng)應(yīng)貫穿于學(xué)生的整個學(xué)習(xí)過程,積極地激發(fā)學(xué)生的潛能。數(shù)學(xué)應(yīng)用與數(shù)學(xué)建模目的是要通過教師培養(yǎng)學(xué)生的意識,教會學(xué)生方法,讓學(xué)生自己去探索?研究?創(chuàng)新,從而提高學(xué)生解決問題的能力。 隨著學(xué)生參加數(shù)模競賽的積極性廣泛提高,賽題也越來越向?qū)嵱眯园l(fā)展。可以說正是數(shù)學(xué)建模競賽帶動了數(shù)模一步一步走向生產(chǎn)和實踐中的應(yīng)用。所以,數(shù)學(xué)建模廣泛應(yīng)用必成為了社會的發(fā)展趨勢。

參考文獻

[1] 鄭平正.淺談數(shù)學(xué)建模在實際問題中的應(yīng)用[J].考試(教研版).2007(01).

第4篇:淺談對數(shù)學(xué)建模的認識范文

【摘 要】高等數(shù)學(xué)課程教學(xué)改革一直是高等教育教學(xué)改革的一個重要分支,由于計算機專業(yè)本身的特點以及在數(shù)學(xué)建模中的廣泛運用,本文提出了一些以數(shù)學(xué)建模為切入點的計算機專業(yè)高等數(shù)學(xué)教學(xué)改革的建議。

關(guān)鍵詞 高等數(shù)學(xué);數(shù)學(xué)建模;數(shù)學(xué)實驗;教學(xué)改革;分層教學(xué)

中圖分類號:G642.0 文獻標識碼:A 文章編號:1671-0568(2015)08-0038-02

20世紀90年代,很多人在思考“把什么樣的高等教育帶進21世紀”這樣一個重大問題,得出一個結(jié)論:高等教育的改革,教育思想觀念改革是先導(dǎo),體制改革是關(guān)鍵,教學(xué)改革是核心。

應(yīng)用型本科教育是培養(yǎng)適應(yīng)生產(chǎn)、建設(shè)、管理及服務(wù)第一線需要的德、智、體全面發(fā)展的技術(shù)(復(fù)合)應(yīng)用型人才。為了適應(yīng)各個技術(shù)領(lǐng)域和職業(yè)崗位對人才素質(zhì)的需要,必須培養(yǎng)學(xué)生具備諸多方面的能力,其中數(shù)學(xué)素質(zhì)是不可缺少的。《高等數(shù)學(xué)》是應(yīng)用型本科院校一門重要的基礎(chǔ)理論課,也是一門重要的工具課,在培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力、運算能力方面的獨特作用,是其他課程無法替代的,也是后續(xù)專業(yè)基礎(chǔ)課程和專業(yè)課程重要的鋪墊。除此之外,數(shù)學(xué)作為一門最基礎(chǔ)的學(xué)科,所取得的成就已成為高科技時代賴以進一步發(fā)展的重要基礎(chǔ),數(shù)學(xué)本身的發(fā)展為各科學(xué)領(lǐng)域的發(fā)展提供了強大的支持。正由于數(shù)學(xué)在當代科學(xué)地位的巨大變化,以及與當代科學(xué)技術(shù)的高度融合,使得全面提高學(xué)生的數(shù)學(xué)素質(zhì)、加強對數(shù)學(xué)綜合應(yīng)用能力的培養(yǎng),成為新世紀實現(xiàn)高等教育根本目標的重要內(nèi)容和高等數(shù)學(xué)教學(xué)改革的基本方向。

2000年7月,第九屆國際數(shù)學(xué)教育大會(ICME-9)在日本召開,主題是21世紀數(shù)學(xué)教育的機遇、任務(wù)和挑戰(zhàn)。本次會議對數(shù)學(xué)教育的現(xiàn)代化手段和計算機輔助教育、課程及教材的改革等多個專題進行了討論。本次大會就各國關(guān)注的問題,也是21世紀數(shù)學(xué)教育改革的重點問題達成共識。關(guān)于數(shù)學(xué)教育理念,可以概括為三句話:人人需要數(shù)學(xué);人人都應(yīng)學(xué)有用的數(shù)學(xué);不同的人應(yīng)當學(xué)不同的數(shù)學(xué)。從而對數(shù)學(xué)的認識從工具的、技術(shù)的層面上提高到文化的層面上。這對我國的數(shù)學(xué)教育改革很有啟發(fā),特別是在儒家傳統(tǒng)文化和現(xiàn)今的考試文化背景下重新審視數(shù)學(xué)教育的功能和任務(wù)是很有幫助的。

一、計算機專業(yè)高等數(shù)學(xué)課程和教學(xué)改革的必要性

進入21世紀以來,由于計算機的飛速發(fā)展,使計算機的應(yīng)用得以向一切領(lǐng)域滲透,各行各業(yè)越來越依賴計算機。作為應(yīng)用科學(xué)的計算機科學(xué),它的算法和理論與數(shù)學(xué)密切相關(guān),數(shù)學(xué)為計算機科學(xué)提供了強有力的理論支持,離開了數(shù)學(xué)的支持,計算機科學(xué)將失去發(fā)展的動力。我們可以看到在計算機科學(xué)技術(shù)領(lǐng)域里,很多學(xué)術(shù)帶頭人都出身于數(shù)學(xué)專業(yè)或接受過嚴格的現(xiàn)代數(shù)學(xué)教育。這是因為大多數(shù)學(xué)基礎(chǔ)好、數(shù)學(xué)修養(yǎng)深的人善于提出新課題,喜歡有挑戰(zhàn)性的工作,具有創(chuàng)造精神和創(chuàng)新能力。所以,在計算機教育中必須加強數(shù)學(xué)的教育,特別是高等數(shù)學(xué)的教育,可以說高等數(shù)學(xué)教育是計算機教育的基石。

但當前不少應(yīng)用型本科院校高等數(shù)學(xué)教學(xué)模式陳舊,教學(xué)中仍未擺脫一些傳統(tǒng)教學(xué)模式的弊端。具體表現(xiàn)在:教學(xué)方法單一,常采取“一張嘴,一支粉筆,一塊黑板”進行滿堂灌的講授方式,沒有充分運用現(xiàn)代化教學(xué)手段;在認識上,不少教師不熟悉高等數(shù)學(xué)與計算機專業(yè)基礎(chǔ)課和專業(yè)課的聯(lián)系以及在這些課程中的作用,只能就數(shù)學(xué)而講數(shù)學(xué),不能從專業(yè)的角度自然地引出數(shù)學(xué)問題并進行講授;在教學(xué)內(nèi)容上,現(xiàn)階段所使用的教材,在數(shù)學(xué)理論上篇幅過多,與計算機相關(guān)的實際應(yīng)用太少,很少有學(xué)校根據(jù)本校的實際情況編寫和使用專門的計算機高等數(shù)學(xué)教材;考試模式和成績評價體系陳舊,課外實踐教學(xué)活動單調(diào),缺乏創(chuàng)意。這些問題都與應(yīng)用型本科教育培養(yǎng)目標的定位不相符,與計算機相關(guān)人才滿足職業(yè)崗位的要求相脫離?;谶@種現(xiàn)狀,計算機專業(yè)高等數(shù)學(xué)課程和教學(xué)改革就變得非常必要和刻不容緩了。

二、數(shù)學(xué)建模與數(shù)學(xué)實驗

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調(diào)查研究、了解對象信息、做出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言作表述,也就是建立數(shù)學(xué)模型,然后用通過計算得到的結(jié)果來解釋實際問題,并接受實際問題的檢驗。這個建立數(shù)學(xué)模型的全過程就稱為數(shù)學(xué)建模。

數(shù)學(xué)模型(Mathematical Model)是一種模擬,是用數(shù)學(xué)符號、數(shù)學(xué)式子、程序、圖形等對實際課題本質(zhì)屬性的抽象而又簡潔的刻畫,它或能解釋某些客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實問題的直接翻版,它的建立常常既需要人們對現(xiàn)實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識。

不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實際問題,還是與其他學(xué)科相結(jié)合形成交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計算求解(通常借助計算機)。數(shù)學(xué)建模和計算機技術(shù)在知識經(jīng)濟時代的作用可謂是如虎添翼。

“數(shù)學(xué)實驗”是近幾年數(shù)學(xué)教育界常提起的一個名詞,泛指學(xué)生在教師指導(dǎo)下用計算機和數(shù)學(xué)軟件學(xué)習(xí)數(shù)學(xué)。這項新事物是繼數(shù)學(xué)建模之后對數(shù)學(xué)教學(xué)體系、內(nèi)容和方法改革的又一嘗試。1998年清華大學(xué)、北京大學(xué)、北京師范大學(xué)共同組織了一個課題組,開始數(shù)學(xué)實驗課的實踐,并于1999年在清華大學(xué)舉辦數(shù)學(xué)實驗講習(xí)班,這項教改實驗得到了來自全國約100所院校的130多位教師的充分肯定,同年,國內(nèi)一連出版了好幾本數(shù)學(xué)實驗教材,到目前為止,不少學(xué)校已經(jīng)或準備開設(shè)這門課程。

三、計算機專業(yè)高等數(shù)學(xué)課程和教學(xué)改革的幾點思考

從大環(huán)境來看,高等數(shù)學(xué)的改革在全國很多高校如火如荼的進行中,也取得了一些很好的成效。其中改革的核心就是將高等數(shù)學(xué)與實際應(yīng)用和專業(yè)需求相結(jié)合,一些新的教學(xué)方法和手段、課程標準、與各專業(yè)相結(jié)合的教材應(yīng)運而生。筆者在教學(xué)實踐中對計算機專業(yè)高等數(shù)學(xué)課程教學(xué)改革有一些思考如下。

1.教材改革。當前,很多本科院校計算機專業(yè)使用的高等數(shù)學(xué)教材都是普通高等學(xué)校工科教材。從數(shù)學(xué)的角度來說,大部分內(nèi)容是詳細的、經(jīng)典的,但與計算機專業(yè)內(nèi)容和教學(xué)有關(guān)的幾乎沒有,這就大大降低了高等數(shù)學(xué)在計算機相關(guān)專業(yè)的作用。

筆者認為,應(yīng)當積極開展調(diào)研,組建計算機數(shù)學(xué)課程改革協(xié)同機制,高數(shù)教師應(yīng)加強與計算機專業(yè)教師的溝通與交流,通過成立計算機專業(yè)數(shù)學(xué)課程改革小組,以此突破改革的瓶頸,從學(xué)生實際和專業(yè)需求出發(fā),以實用為原則,了解專業(yè)、工作實踐對數(shù)學(xué)課程的需求,著手研發(fā)應(yīng)用型本科計算機專業(yè)《計算機數(shù)學(xué)》教材。對于這項工作,有條件的院??勺灾魍瓿?,也可以是同類型的幾所院校合作完成。

2.教學(xué)內(nèi)容改革。在實際的教學(xué)過程中,高等數(shù)學(xué)教師往往過分強調(diào)運算技巧和證明,忽視了對現(xiàn)代數(shù)學(xué)素質(zhì)所內(nèi)涵的特性的描述,忽略了對具體問題的概括,更缺少對高等數(shù)學(xué)本身所蘊含的計算機算法思想的分析和闡述。這就導(dǎo)致不少計算機專業(yè)的學(xué)生認為高等數(shù)學(xué)的學(xué)習(xí)對本專業(yè)用處不大。對于同樣的一個知識點,高數(shù)老師僅從數(shù)學(xué)角度去分析,學(xué)生不能將其運用到實際算法當中去,導(dǎo)致計算機相關(guān)課程老師得將同樣的數(shù)學(xué)概念從另外的角度重新闡述,將數(shù)學(xué)的方法過渡到計算機算法中去,這種學(xué)習(xí)與運用之間、學(xué)科之間脫節(jié)的現(xiàn)象相當普遍。

舉個例子,在導(dǎo)數(shù)這一章的學(xué)習(xí)中,高數(shù)老師對導(dǎo)數(shù)的幾何意義僅提出:曲線在點(x0,f(x0))處的切線斜率等于該點處的導(dǎo)數(shù)值,并給出在點x0處切線方程和法線方程的求法。但實際對于計算機專業(yè)的學(xué)生來說,所直接需要的是由導(dǎo)數(shù)幾何意義引伸的遞推關(guān)系式。如果高數(shù)授課教師在這一節(jié)的學(xué)習(xí)中作進一步闡述:由導(dǎo)數(shù)幾何意義,在一定條件下,適當選取初始值可得到一點列{xi},該點列由(該式在數(shù)學(xué)上稱為牛頓遞推公式)給出,且存在極限,x*為方程f(x0)=0的根。這對于學(xué)習(xí)算法語言的學(xué)生來說,是很容易利用典型的迭代思想將其轉(zhuǎn)化為算法語言中的牛頓迭代公式,從而大大提高了高等數(shù)學(xué)和計算機專業(yè)課程的融合度。

除此之外,許多高校的實踐證明,數(shù)學(xué)建模和數(shù)學(xué)實驗是培養(yǎng)學(xué)生思維素質(zhì),提高學(xué)生應(yīng)用數(shù)學(xué)工具解決實際問題的應(yīng)用能力和創(chuàng)新能力的有效方式,加之計算機在數(shù)學(xué)建模和數(shù)學(xué)實驗中廣泛運用,以及計算機專業(yè)本身的特點,很有必要在高等數(shù)學(xué)教學(xué)中增設(shè)數(shù)學(xué)建模和數(shù)學(xué)實驗相關(guān)內(nèi)容,充分發(fā)揮計算機專業(yè)學(xué)生的作用。

3.分層教學(xué)。近些年,高校招生規(guī)模逐步擴大,導(dǎo)致學(xué)生個體差異越來越大,數(shù)學(xué)基礎(chǔ)參差不齊,如果對每個學(xué)生的教學(xué)內(nèi)容和教學(xué)要求都一樣,顯然會出現(xiàn)有些學(xué)生“學(xué)有余力”,而有些學(xué)生會“力不從心”。怎樣解決這個擴大招生和現(xiàn)行教學(xué)模式的矛盾呢?筆者認為可以從兩個方面入手:

第一,分層次開設(shè)高等數(shù)學(xué)課程:基礎(chǔ)層次和提高層次,條件較好的院校和設(shè)立與各專業(yè)相結(jié)合的擴展層次?;A(chǔ)層次的教學(xué)內(nèi)容要以確保滿足各專業(yè)對數(shù)學(xué)的需要為依據(jù);提高層次是針對準備繼續(xù)深造或所學(xué)專業(yè)對數(shù)學(xué)有更高要求的學(xué)生設(shè)置的,充分考慮考研大綱的要求,增設(shè)一些現(xiàn)代數(shù)學(xué)的思想、方法或一些研究前沿的東西;擴展層次由于與專業(yè)或?qū)嶋H問題聯(lián)系密切,其教學(xué)內(nèi)容的確定可由相關(guān)專業(yè)老師和高數(shù)老師共同商定。

第二,將學(xué)生分成幾個層次。分層綜合考慮三大因素:①數(shù)學(xué)基礎(chǔ):依照學(xué)生的入學(xué)分級考試成績、高考成績和中學(xué)時期的數(shù)學(xué)競賽成績;②個人志愿:充分考慮學(xué)生個人的興趣愛好;③專業(yè)方向:根據(jù)專業(yè)對數(shù)學(xué)的需求作適當?shù)恼{(diào)整。對各個層次的學(xué)生分別開設(shè)上面提到的相應(yīng)層次的高等數(shù)學(xué)課程。

總之,計算機專業(yè)的高等數(shù)學(xué)課程和教學(xué)改革是一項龐大的系統(tǒng)工程,不能一蹴而就,需要教師和學(xué)生的共同參與,也需要數(shù)學(xué)教育工作者長期不懈的探索和努力,任重而道遠。不過筆者認為,由于計算機專業(yè)本身的特點,與數(shù)學(xué)建模和數(shù)學(xué)實驗相結(jié)合應(yīng)該是計算機專業(yè)高等數(shù)學(xué)課程和教學(xué)改革的一個很好的切入點。

參考文獻:

[1]李嵐.高等數(shù)學(xué)教學(xué)改革研究進展[J].大學(xué)數(shù)學(xué),2007,23(4):20-26.

[2]程餡,馬錦錦.淺談高等數(shù)學(xué)在計算機教育中的作用[J].電腦知識與技術(shù),2007,20(40),592-592.

[3]姜啟源.數(shù)學(xué)實驗與數(shù)學(xué)建模[J].數(shù)學(xué)的實踐與認識,2001,31(5):613-617.

[4]王新社,凌鳳彩,趙梅琳.計算機專業(yè)高等數(shù)學(xué)的教學(xué)與改革[J].周口師范高等??茖W(xué)校學(xué)報,2002,19(2):17-18.

[5]楊宏林,丁占文,田立新.關(guān)于高等數(shù)學(xué)課程教學(xué)改革的幾點思考[J].數(shù)學(xué)教育學(xué)報2004,13(2):74-76.

第5篇:淺談對數(shù)學(xué)建模的認識范文

關(guān)鍵詞:數(shù)學(xué)建模;中職數(shù)學(xué);教學(xué)

20世紀以來,隨著科技的飛速發(fā)展,數(shù)學(xué)的科學(xué)地位得到了顯著的提高。這一變化來源于數(shù)學(xué)與實際生活的緊密結(jié)合。通過建立恰當?shù)哪P徒鉀Q實際生活的各種問題,這就是數(shù)學(xué)建模。從這一層面講,數(shù)學(xué)的存在性正是依托于數(shù)學(xué)建模。因此對于任何一個學(xué)習(xí)數(shù)學(xué)的人而言,建模能力的培養(yǎng)都是非常重要的。眾所周知,學(xué)生建模能力的培養(yǎng)主要來源于教師的教學(xué)活動,故而就數(shù)學(xué)建模在數(shù)學(xué)教學(xué)中的重要性及如何實現(xiàn)這一能力的培養(yǎng)進行探討顯得很有必要。結(jié)合作者所在單位的實際情況,本文將專門就數(shù)學(xué)建模在職業(yè)中學(xué)的教學(xué)情況進行探討。

一、數(shù)學(xué)建模簡介

1.數(shù)學(xué)建模的概念。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運用數(shù)學(xué)的語言和方法,將現(xiàn)實生活中具體工作過程或?qū)嶋H問題,通過抽象和簡化,建立為具有一定代表性的、只有數(shù)字符號的模型,從而進行分析和解決問題。事實上,我們現(xiàn)在所有數(shù)學(xué)知識中概念和各種計算公式(含方程式)都是源于實際生活,都是為了解決實際生產(chǎn)問題而建立的。如:“極限”概念,微分和積分的計算方法,就是牛頓在研究和解決變速運動時提出的。麥克斯韋在研究電磁波輻射時,就建立了電磁波輻射模型,并導(dǎo)出了麥克斯韋方程組。數(shù)學(xué)模型構(gòu)建的操作程序大致上可以概括為:實際問題分析抽象與合理假設(shè)建立模型數(shù)學(xué)問題數(shù)學(xué)求解實際解檢驗實際問題。

2.數(shù)學(xué)建模的應(yīng)用。數(shù)學(xué)建模是一種源于生活、服務(wù)于生活的數(shù)學(xué)分析工具。它不僅是為了幫助我們解決實際生活和生產(chǎn)活動中所出現(xiàn)的具體問題,它還是幫助我們進行科學(xué)研究探索微觀世界,以及了解事物未來變化趨勢的有效手段。如,在宏觀工程技術(shù)領(lǐng)域,諸如機械、電機、土木、水利等領(lǐng)域中將利用數(shù)學(xué)建模進行優(yōu)化項目設(shè)計。在高新技術(shù)領(lǐng)域,譬如無線通信、航天衛(wèi)星、自動化控制,以及在電子、中子等微觀世界中,數(shù)學(xué)建模更是可以使我們預(yù)測它的變化或可能出現(xiàn)的問題。數(shù)學(xué)建模連接著數(shù)學(xué)知識和現(xiàn)實世界,將抽象的數(shù)學(xué)概念和定律變?yōu)榫唧w的直觀的事物,所以它的應(yīng)用越來越廣泛。

二、開展數(shù)學(xué)建模教學(xué)的重要性

1.實現(xiàn)中職教育目標所決定。中職教育培養(yǎng)的是生產(chǎn)第一線操作人員或技術(shù)人員,學(xué)習(xí)和了解數(shù)學(xué)建模不僅有利于豐富中職生數(shù)學(xué)知識,還有利于擴大他們的知識面,提高運用數(shù)學(xué)知識解決實際生產(chǎn)中可能遇到的問題。中職學(xué)生數(shù)學(xué)基礎(chǔ)薄弱,對于抽象的數(shù)學(xué)很容易產(chǎn)生厭學(xué)心理,但是,他們思維活躍,對于新鮮事物有著強烈的好奇心。我們聯(lián)系他們專業(yè)學(xué)科(或職業(yè)崗位)需求,結(jié)合數(shù)學(xué)教學(xué)進程,適時提出蘊含著一定數(shù)學(xué)思想方法的問題,如:金融專業(yè)中的銀行貸款與分時付息問題、電子企業(yè)的元件標稱值與誤差問題、制造行業(yè)中生產(chǎn)的次品率測算與控制問題、物流業(yè)的油價與運輸成本問題等,這不僅使中職教育中數(shù)學(xué)學(xué)科教學(xué)服務(wù)于專業(yè)課教學(xué),在文化課教學(xué)中滲透了職業(yè)意識,還培養(yǎng)了學(xué)生用數(shù)學(xué)思想解決實際問題的能力,讓他們感受到學(xué)以致用。

2.激發(fā)學(xué)生學(xué)習(xí)主體所要求。根據(jù)現(xiàn)代教育理論,學(xué)生是教學(xué)活動的主人,是學(xué)習(xí)、掌握和最終運用知識的主體。教師在教學(xué)活動中只是起著引導(dǎo)作用,起著組織和協(xié)調(diào)作用。在數(shù)學(xué)建模教學(xué)活動中,在問題的分類整理歸納提出抽象建模分析解決等環(huán)節(jié),學(xué)生均可以參加進來。由此,學(xué)生學(xué)習(xí)積極性和主體性表現(xiàn)將更加突出。學(xué)生改變了過去被動學(xué)數(shù)學(xué)、只會跟著老師解答題目的狀態(tài)。這是因為,一個問題的提出,它可能有不同的解決方法,即有不同的數(shù)學(xué)建模形式。在學(xué)生之間和師生之間交流討論之后,他們將獲得自己的新認識和新體會,從而形成自己的數(shù)學(xué)知識結(jié)構(gòu),以及分析問題的方法。這就為中職學(xué)生的繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。

3.培養(yǎng)學(xué)生創(chuàng)新能力所必須。中職教育不能是一種終結(jié)性教育,它應(yīng)該是一種終生教育。中職教育不能只是一種就業(yè)教育,它更應(yīng)該是一種創(chuàng)新教育。當今社會發(fā)展迅猛,科學(xué)技術(shù)日新月異,新技術(shù)新工藝不斷出現(xiàn)在生產(chǎn)過程中,所以,培養(yǎng)中職學(xué)生的收集信息能力,學(xué)會學(xué)習(xí),從就業(yè)到創(chuàng)業(yè)十分必要。通過數(shù)學(xué)建模的教學(xué)活動,讓學(xué)生學(xué)會捕捉信息、搜集數(shù)據(jù),進而分析、提出解決方案到最終實施,這不僅可以有效地培養(yǎng)中職學(xué)生收集信息的能力、分析問題的能力和解決問題的能力。并且在建模過程中,還可以培養(yǎng)中職學(xué)生的創(chuàng)新意識和能力,只有這樣,我們的中職學(xué)生才能實現(xiàn)從就業(yè)走向創(chuàng)業(yè),為他們的職業(yè)生涯發(fā)展奠定堅實的基礎(chǔ),提升中職教育教學(xué)質(zhì)量。

三、在教學(xué)中滲透數(shù)學(xué)建模思想

1.在數(shù)列的教學(xué)中滲透建模思想。有較強規(guī)律性的數(shù)列包括等差數(shù)列、等比數(shù)列和一些由等差數(shù)列和等比數(shù)列組合而成的特殊數(shù)列。這些數(shù)列在現(xiàn)實生活中具有極強的應(yīng)用性,構(gòu)建這些數(shù)列的模型,就為巧妙解決實際問題提供了依據(jù)。

例如:大學(xué)生小李每月向自己零存整取賬戶中存入1000元。5年后,他看中一個創(chuàng)業(yè)項目,項目的啟動資金需要20萬元。問:小李這5年存款的本息一共達到多少元?如果不夠20萬元他還將向銀行貸款多少元?

分析:要知道銀行零存整取的年利率和銀行利息計算方式是單息還是復(fù)息。在求得5年零存整取本金和利息后,才能求出是否需要向銀行貸款,以及需要貸款的金額。即,題中所要解決的問題是5年零存整取本息金額和所需貸款金額。

假設(shè)銀行存貸款利率不隨物價波動即為常數(shù),且5年期零存整取的月利率為每期為8‰一個月,按照單利計算。因此,5年零存整取利本息求解模型:每筆款由于存期不同所得本利和不同,按單利計算,1000元每期的利息為1000×8‰=8元,設(shè)按本金存入順序本利和依次為:a1,a2,a3,…,a60,則a1=1000+60×8,a2=1000+59×8,a3=1000+58×8,…a60=1000+8,故{an}為公差d=-8的等差數(shù)列,實際問題就轉(zhuǎn)化為求等差數(shù)列前n項和Sn=■=■=74640(元)

即,小李可以取得本利合計74640元。接著,我們就可以求出他還需向銀行貸款金額為:200000(元)-74640(元)=125360(元)。

若在學(xué)生能力較好的情況下還可以讓學(xué)生討論每期的還款額為多少,如果銀行減少貸款數(shù)額為10萬元時,還要考慮什么因素?

在學(xué)習(xí)中,我們可以把該建模轉(zhuǎn)換為一般模式――零存整取本息計算模型。即,每期存入等額金p元,每期利率為r,那么n期滿后本息金額為:

S=p(1+nr)+p[1+(n-1)r]+…+p(1+r)=pn+■pr

2.在函數(shù)教學(xué)中滲透建模思想。一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)等是我們高中階段學(xué)習(xí)的比較重要的幾類函數(shù)。這些函數(shù)在我們的日常生活中應(yīng)用十分廣泛,在教學(xué)中從實際生活的例子入手,建立數(shù)學(xué)模型,解決實際問題,讓學(xué)生感受函數(shù)的重要性。

例:現(xiàn)在古董市場有一幅達?芬奇(1452-1519)的繪畫,測得其碳-14的含量為原來的94.1%。根據(jù)這個信息,請你從時間上判斷這幅畫是不是贗品?(已知碳-14半衰期為5730年)

背景的了解:大氣中碳-14能跟氧原子結(jié)合成二氧化碳。生物存活期間,不斷從大氣中獲取這種放射性碳,死后它就停止吸收,存留在體內(nèi)的放射性碳也不斷減少,并且每年的衰變速度不變,大約經(jīng)過5730年,它的含量可衰減一半。因此物理學(xué)家將5730年作為碳-14的“半衰期”。

題中要解決的問題:從碳-14的含量來判斷是否是贗品。

問題分析:要從時間上判斷是否是贗品,只要能夠計算出該畫是在達?芬奇生活的時間段內(nèi)畫的即可。但是題目中沒有告訴碳-14每年經(jīng)過衰減后殘留的百分比。因此在解決這道題之前,要先求出每年剩余的碳-14的量。

模型建立與求解:設(shè)這幅畫的年齡為x,碳-14的每年的殘留量的百分比為m,畫中原來碳-14含量為l,根據(jù)題意,m5730=■,經(jīng)過開方得:m=(■)5730,則經(jīng)過x年后碳-14的殘留量為:0.941a=a(■)■,消去a后,兩邊取常用對數(shù),得lg0.941=■lg0.5。解得x=5730×■≈503。因為,2009-503-1452=54,這幅畫約在達?芬奇54歲時完成,所以從時間上看不是贗品。考古學(xué)家或是從事鑒定工作的人經(jīng)常使用“放射性碳年代鑒定法”來進行年代鑒定,這在自然科學(xué)中有著廣泛的應(yīng)用。

3.在數(shù)學(xué)期望的教學(xué)中滲透建模思想。數(shù)學(xué)期望是概率統(tǒng)計中隨機變量最基本的數(shù)學(xué)特征之一,是隨機變量按概率的加權(quán)平均,又稱期望或均值,它是簡單算術(shù)平均的一種推廣。生活中,有許多問題可以利用數(shù)學(xué)期望來解決。下面以求職決策問題作分析。

例如:我校畢業(yè)生小張有機會到三家公司工作。他首先要參加公司組織的面試。按照面試時間順序,這三家公司分別記為A、B、C。每家公司都提供三種待遇不同的職位,職位與工資承諾如下表:

按照規(guī)定,小張在公司面試后要立即做出決定接受或拒絕某種職位,且不許毀約。小張根據(jù)自己學(xué)業(yè)成績和綜合素質(zhì),認為獲得公司三種職位的可能性依次為0.2,0.3和0.4,被拒絕的可能性為0.1。如果小張把工資作為首選條件,那么他在各公司面試時,對公司提供的各種職位應(yīng)作何種選擇?

題中所要解決的問題:在面試時該如何做出最優(yōu)的決策。

模型建立與求解:由于面試是由A公司開始,小張在選擇A公司三種職位時必須考慮后面B、C公司提供的工資待遇,同樣在B公司面試后,也必須考慮C公司的待遇。因此我們先從C公司開始討論。由于C公司的工資的X3期望值為:EX3=4000×0.2+3000×0.3+2500×0.4=2700元。再考慮B公司,由于B公司一般職位工資只有2500元,低于C公司的平均工資,因此甲在面對B公司時,只接受極好和好兩種職位,否則去C公司。此決策時甲工資的期望X2為:EX2=3900×0.2+2950×0.3+2700×0.4=3015元。最后考慮A公司只有極好職位工資超過3015,因此甲只接受A公司的極好職位。否則去B公司。

經(jīng)過上面的分析,小張的面試順序應(yīng)該是:先去A公司應(yīng)聘,若A公司提供極好職位就接受。否則去B公司,若B公司提供極好或好的職位就接受。否則去C公司應(yīng)聘任一種職位。在這一面試順序下,小張的工資X的期望值為:EX=3500×0.2+3015×0.8=3112元。

四、結(jié)束語

數(shù)學(xué)建模教學(xué)方法既是一種理實一體的教學(xué)方法,也是一種“做中學(xué)、學(xué)中做”的方法。從數(shù)學(xué)建?;顒拥谋举|(zhì)上看,建模的開始和目標都是為了解決實際生活或生產(chǎn)中的問題,而其解決問題的過程則是一個抽象的理論分析和運算的過程。即,它是一種典型的理實一體教學(xué)過程。從數(shù)學(xué)建?;顒拥闹黧w上看,學(xué)生在建模過程中,一邊做(如收集、分類、整理信息)一邊學(xué)(如歸納、分析),進而學(xué)(如嘗試建模、解決問題)中做(如驗證建模、改進建模等)。數(shù)學(xué)建模教學(xué)方法使得抽象和神秘的數(shù)學(xué)殿堂變得具體和親切,使得數(shù)學(xué)知識變得簡單,數(shù)學(xué)思想變得清晰,更容易被中職學(xué)生所接受。

參考文獻:

[1]吳炯圻,林培榕.數(shù)學(xué)思想方法[M].廈門:廈門大學(xué)出版社,2001.

2]李廣全,李尚至.數(shù)學(xué)(基礎(chǔ)模塊)[M].北京:高等教育出版社,2009.

[3]李春月.在初中數(shù)學(xué)教學(xué)中滲透和應(yīng)用建模思想[J].中國教育技術(shù)裝備,2009,(19):39-39.

[4]梁世日.新課程背景下中學(xué)數(shù)學(xué)建模教學(xué)的幾點思考[J].數(shù)學(xué)教學(xué)與研究,2007,(31):39-40.

第6篇:淺談對數(shù)學(xué)建模的認識范文

關(guān)鍵詞:數(shù)學(xué)應(yīng)用能力;數(shù)學(xué)教學(xué);高等教育

DOI:10.16640/ki.37-1222/t.2017.01.183

0 引言

隨著經(jīng)濟的發(fā)展,科學(xué)技術(shù)的進步,計算機的應(yīng)用范圍越來越廣,進一步拉近了數(shù)學(xué)與生產(chǎn)生活之間的距離,在這種情況下,加強高校數(shù)學(xué)教學(xué)具有重要意義。高校在組織開展數(shù)學(xué)教學(xué)活動時,需要將培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力作為教學(xué)目標,通過幫助學(xué)生培養(yǎng)數(shù)學(xué)應(yīng)用能力,不斷完善學(xué)生的數(shù)學(xué)思維,在一定程度上提升學(xué)生的數(shù)學(xué)實踐能力。但是,從高校實際的數(shù)學(xué)教學(xué)結(jié)果來看,無論是教學(xué)內(nèi)容,還是教學(xué)模式,都不不利培養(yǎng)、提升學(xué)生的數(shù)學(xué)應(yīng)用能力。

1 高校數(shù)學(xué)教學(xué)培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用能力的現(xiàn)狀

受傳統(tǒng)教學(xué)觀念的影響和制約,高校在組織開展數(shù)學(xué)教學(xué)活動時,普遍存在重視數(shù)學(xué)知識的理論性、嚴謹性,忽視了數(shù)學(xué)應(yīng)用性的現(xiàn)象,這一結(jié)果可以通過學(xué)時設(shè)置、考試分數(shù)等形式證明。在培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力方面,這種教學(xué)理念產(chǎn)生不利影響。對于高校學(xué)生來說,在學(xué)習(xí)數(shù)學(xué)的過程中,由于學(xué)習(xí)時間緊,同時要應(yīng)對考試,在這種情況下,學(xué)生們普遍將精力集中在數(shù)學(xué)計算、邏輯分析等方面,進而人為縮小了學(xué)生對數(shù)學(xué)的認識面,甚至在討論數(shù)學(xué)問題時,一些學(xué)生敷衍了事,做題嚴重依賴技巧,根本沒有深入挖掘問題本質(zhì)。

對于高校來說,弱化學(xué)生數(shù)學(xué)應(yīng)用能力的原因比較多,首先,在數(shù)學(xué)教材方面,教學(xué)內(nèi)容主要側(cè)重理論推導(dǎo),對開展應(yīng)用教學(xué)活動產(chǎn)生不利影響,對于學(xué)生來說,長期處在這種教學(xué)環(huán)境中,往往會弱化了應(yīng)用意識。其次,在師資方面,在培養(yǎng)學(xué)生應(yīng)用能力方面,教師發(fā)揮著重要的作用,對于高校來說,在組織開展數(shù)學(xué)教學(xué)活動時,由于任課教師缺乏應(yīng)用能力,進而在一定程度上嚴重制約著學(xué)生數(shù)學(xué)應(yīng)用能力的培養(yǎng)。最后,沒有正確處理數(shù)學(xué)計算能力和應(yīng)用能力之間的關(guān)系,進而難以幫助學(xué)生培養(yǎng)應(yīng)用能力,例如,在數(shù)學(xué)計算方面,學(xué)生一般會借助計算機進行計算,在這種情況下會嚴重依賴計算機的操作技巧,進而弱化了培養(yǎng)應(yīng)用能力。另外,在數(shù)學(xué)教學(xué)方面,通過數(shù)學(xué)建模可以有效地幫助學(xué)生培養(yǎng)應(yīng)用能力,但是,由于學(xué)生缺乏動手能力,并且建模練習(xí)不夠,進而難以通過數(shù)學(xué)建模的方式培養(yǎng)學(xué)生的應(yīng)用能力。

2 培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用能力的具體措施

2.1 改革教學(xué)內(nèi)容

高校在組織開展數(shù)學(xué)教育教學(xué)活動時,為了幫助學(xué)生培養(yǎng)數(shù)學(xué)應(yīng)用能力,首先,要改革教學(xué)內(nèi)容,在數(shù)學(xué)教育教學(xué)活動中,需要重點關(guān)注數(shù)學(xué)課程體系、教學(xué)內(nèi)容等,結(jié)合高校自身的實際情況,編制適合本校的教材,豐富教學(xué)內(nèi)容,注重實際問題的解決,重視數(shù)學(xué)教學(xué)的實踐性、趣味性,例如,在教授數(shù)學(xué)概念時,需要綜合分析學(xué)生的專業(yè)情況,選擇相應(yīng)的習(xí)題、例題(難度適中)進行分析,在教學(xué)過程中,通過設(shè)置開放性的問題,引導(dǎo)學(xué)生自主式、探索式學(xué)習(xí),以此幫助學(xué)生培養(yǎng)數(shù)學(xué)應(yīng)用能力。

2.2 組織開展數(shù)學(xué)建模教育教學(xué)活動

對于高校來說,在幫助學(xué)生培養(yǎng)數(shù)學(xué)應(yīng)用能力的過程中,需要讓學(xué)生了解數(shù)學(xué)概念,把握數(shù)學(xué)的發(fā)展過程,同時能夠樹立數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律,然后在長期的實踐學(xué)習(xí)中,培養(yǎng)其數(shù)學(xué)應(yīng)用意識。在數(shù)學(xué)教學(xué)過程中,通過組織開展數(shù)學(xué)建模教育教學(xué)活動,同時借助數(shù)學(xué)語言描述抽象問題,然后利用數(shù)學(xué)方法對復(fù)雜的數(shù)學(xué)問題進行簡化處理。在實際教學(xué)中,可以通過比賽的方式開展數(shù)學(xué)建模活動,鼓勵學(xué)生積極參與比賽,在比賽中培養(yǎng)、提升學(xué)生的數(shù)學(xué)思維和數(shù)學(xué)能力。在研究數(shù)學(xué)問題的過程中,學(xué)生會在潛移默化中樹立數(shù)學(xué)應(yīng)用意識,進而培養(yǎng)自身的數(shù)學(xué)應(yīng)用能力。

2.3 豐富數(shù)學(xué)教學(xué)模式

隨著科學(xué)技術(shù)的進步,在組織開展數(shù)學(xué)教育教學(xué)活動時,教師可以將多媒體等現(xiàn)代技術(shù)應(yīng)用數(shù)學(xué)教學(xué)中,進一步將抽象思維直觀化,為幫助學(xué)生掌握吸收抽象數(shù)學(xué)知識奠定基礎(chǔ)。例如,在講授不定積分、曲面積分等內(nèi)容時,教師可以借助多媒體更加直觀地描述冗長的數(shù)學(xué)定義、抽象概念等,一方面可以激發(fā)學(xué)生學(xué)習(xí)的積極性,另一方面在輕松愉悅的環(huán)境中讓學(xué)生掌握更多的數(shù)學(xué)知識,為培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力做好準備。

2.4 將教學(xué)內(nèi)容與實踐相聯(lián)系

對于高校來說,幫助學(xué)生培養(yǎng)數(shù)學(xué)應(yīng)用能力,從根本上說,就是幫助學(xué)生將數(shù)學(xué)理論知識與實踐相聯(lián)系。因此,在數(shù)學(xué)教育教學(xué)過程中,數(shù)學(xué)教師需要將教學(xué)內(nèi)容生活化。從高校當前的數(shù)學(xué)教學(xué)內(nèi)容來看,主要側(cè)重理論知識,教學(xué)案例普遍缺乏針對性,不僅增加了學(xué)生學(xué)習(xí)數(shù)學(xué)知識的難度,同時打擊了學(xué)生學(xué)習(xí)數(shù)學(xué)知識的積極性。這樣的教學(xué)內(nèi)容嚴重制約了數(shù)學(xué)應(yīng)用能力的提升,基于此,在組織開展數(shù)學(xué)教育教學(xué)活動時,需要在教學(xué)內(nèi)容中融入生活化因素,以此豐富數(shù)學(xué)教學(xué)內(nèi)容。

3 結(jié)論

在市場經(jīng)濟環(huán)境下,高校在培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用能力方面依然存在眾多問題,這些問題的存在制約了學(xué)生應(yīng)用能力的提升。因此,高校需要在教學(xué)內(nèi)容、教學(xué)方式等方面進行創(chuàng)新,幫助學(xué)生培養(yǎng)和提升應(yīng)用能力。在數(shù)學(xué)教學(xué)過程中,通過組織開展數(shù)學(xué)建模活動,幫助學(xué)生培養(yǎng)實踐操作能力,同時,通過對教學(xué)模式進行創(chuàng)新,借助多媒體等現(xiàn)代教學(xué)手段,以此激發(fā)學(xué)生學(xué)習(xí)的積極性,幫助學(xué)生更好處理數(shù)學(xué)問題。對于高校來說,幫助學(xué)生培養(yǎng)應(yīng)用能力,需要將教學(xué)內(nèi)容與實踐相聯(lián)系,通過將教學(xué)內(nèi)容與實踐進行結(jié)合,在一定程度上激發(fā)學(xué)生學(xué)習(xí)的熱情,提高教學(xué)的應(yīng)用性,進一步幫助學(xué)生培養(yǎng)數(shù)學(xué)應(yīng)用能力。

參考文獻:

[1]郭娜,朱奕奕.淺談高校應(yīng)用數(shù)學(xué)教學(xué)改革與學(xué)生應(yīng)用數(shù)學(xué)意識的培養(yǎng)[J].信息化建設(shè),2015(04).

[2]田穎輝,宮莉.高職數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)意識和能力的研究[J].長春師范大學(xué)學(xué)報,2015(04).

第7篇:淺談對數(shù)學(xué)建模的認識范文

【關(guān)鍵詞】符號語言 小學(xué)數(shù)學(xué) 教學(xué)

【中圖分類號】G623.5 【文獻標識碼】A 【文章編號】2095-3089(2015)11-0123-01

數(shù)學(xué)中有一個著名的定義:數(shù)學(xué)=符號+邏輯。由此可見,數(shù)學(xué)中“符號語言”的重要性。數(shù)學(xué)中“符號語言”不受國家、民族、地域、語言等客觀因素的限制,是整個數(shù)學(xué)王國里的通用語言,在數(shù)學(xué)以及其他學(xué)科的跨文化交流中有著舉足輕重的地位。不僅如此,“符號語言”在幫助小學(xué)生培養(yǎng)數(shù)學(xué)意識,提高學(xué)習(xí)效率上也起到了異常重要的作用。

一、數(shù)學(xué)中的“符號語言”

數(shù)學(xué)中的符號語言即數(shù)學(xué)語言,是數(shù)學(xué)思想的載體,同時也是數(shù)學(xué)領(lǐng)域的表達、交流工具,例如“12×5=60”就是典型的數(shù)學(xué)符號語言[1]。

數(shù)學(xué)符號一般分為對象、運算、結(jié)論、標點、性質(zhì)等多種類型,這些都是數(shù)學(xué)中符號語言的基本元素。我們要想探究數(shù)學(xué)“符號語言”在小學(xué)數(shù)學(xué)教學(xué)中的作用,首先得明確這些概念。

二、“符號語言”在小學(xué)數(shù)學(xué)教學(xué)中的作用

(一)數(shù)學(xué)“符號語言”可以幫助學(xué)生全面理解數(shù)學(xué)概念

數(shù)學(xué)中的“符號語言”較之我們的日常語言,可以更加簡潔明了地反映和敘述數(shù)學(xué)概念[2],“符號語言”在小學(xué)教學(xué)中的廣泛應(yīng)用可以有效幫助學(xué)生理解數(shù)學(xué)概念、定義等相關(guān)數(shù)學(xué)知識。

案例一:數(shù)學(xué)情境中的“符號語言”表達

在一次課間閑聊中,有學(xué)生問我:老師您今年多少歲了?

當時,我們的課程正進行到未知數(shù)這一章節(jié),我就回答道:老師的年齡是一個未知數(shù),那你今年幾歲???

學(xué)生:我今年12歲。老師,未知數(shù)是幾歲???

老師:我年齡的一半再減去6就是你的年齡。咱們不是剛學(xué)了未知數(shù)嗎?你可以利用未知數(shù)列出表示咱倆年齡的關(guān)系式,這樣很容易就能算出來我的年齡呀!

學(xué)生若有所思,在紙上列出“X÷2-6=12”。不一會兒,學(xué)生就算出了我的年齡,他高興地告訴我:老師,我知道您今年36歲啦!

案例分析:通過在數(shù)學(xué)教學(xué)過程中數(shù)學(xué)“符號語言”的應(yīng)用,學(xué)生很容易就列出了表示我和他各自年齡之間的關(guān)系式,不但加深了他對未知數(shù)這個數(shù)學(xué)概念的理解,還提高了他的學(xué)習(xí)效率。由此案例可以看出,數(shù)學(xué)中的“符號語言”可以幫助學(xué)生全面理解數(shù)學(xué)概念,并由此解決實際問題。

(二)“符號語言”可以激發(fā)學(xué)生對數(shù)學(xué)課程的學(xué)習(xí)興趣

我們都知道數(shù)學(xué)中的“符號語言”具有簡潔明了的特點,這一特點使得其在數(shù)學(xué)教學(xué)中深受小學(xué)生的喜愛。

案例二:同樣的一句話,用日常語言表達就是“將數(shù)字2與數(shù)字5的和平均分成兩部分,所得結(jié)果是多少?”;但若是用數(shù)學(xué)符號語言表達就變成簡單的“(2+5)÷2=?”。

案例分析:數(shù)學(xué)符號可以簡化數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)以及很多其他情境之下的表達,就因為其這一功能,就可以激發(fā)學(xué)習(xí)任務(wù)繁重的小學(xué)生對數(shù)學(xué)課程的學(xué)習(xí)興趣。

(三)“符號語言”可以幫助學(xué)生培養(yǎng)數(shù)學(xué)思維

數(shù)學(xué)思維可以使人變得更有邏輯、更加理性,可以輔助提高人們思考問題和解決問題的能力[3]。小學(xué)生可以通過在數(shù)學(xué)課堂以及其他情境之下對數(shù)學(xué)中“符號語言”的應(yīng)用,培養(yǎng)數(shù)學(xué)思維,這可以使得學(xué)生在語言表達和邏輯思維等很多方面得到有效的培養(yǎng)和提高。

(四)“符號語言”可以幫助學(xué)生完成系統(tǒng)數(shù)學(xué)知識的建模

“符號語言”在小學(xué)數(shù)學(xué)教學(xué)過程中的大量應(yīng)用,可以有效地加深學(xué)生對所學(xué)數(shù)學(xué)知識的印象,有利于學(xué)生更好地掌握數(shù)學(xué)問題中數(shù)與量的關(guān)系。學(xué)生可以通過數(shù)學(xué)符號語言建立一個完整的數(shù)字與符號的集成系統(tǒng),這在數(shù)學(xué)以及其他學(xué)科的學(xué)習(xí)過程中都異常重要。同時,數(shù)學(xué)符號語言還可以幫助小學(xué)生更加清晰地認識數(shù)學(xué)問題、更加便捷地找到解決所遇到問題的辦法,完成數(shù)學(xué)課程學(xué)習(xí)過程中非常必要的系統(tǒng)數(shù)學(xué)知識的建模工作。

三、結(jié)束語

綜上所述,“符號語言”是可以幫助人們更加準確地進行表達、計算、邏輯推理和問題解決的工具,同時也是幫助學(xué)生有效掌握系統(tǒng)數(shù)學(xué)知識的重要方法。筆者希望廣大小學(xué)數(shù)學(xué)教育工作者在進行數(shù)學(xué)教學(xué)的時候,不要僅僅為了數(shù)學(xué)中符號語言的教學(xué)而教學(xué),而是要正確地利用數(shù)學(xué)符號語言這一工具,將其在數(shù)學(xué)教學(xué)中的使用經(jīng)驗推廣到其他課程中去,幫助學(xué)生提高思考、認識、邏輯、推理等一系列的綜合能力。

參考文獻:

[1]袁春紅.淺談小學(xué)數(shù)學(xué)教學(xué)中滲透“幾何直觀”的教學(xué)策略[J].中國教師,2013,(10):18-21.

[2]鄒源.淺談初中數(shù)學(xué)符號語言的特點及功能[J].南北橋,2014,(12):65-65.

[3]王允.淺談數(shù)學(xué)符號語言[J].讀寫算(教育教學(xué)研究),2014,(35):216-217.

第8篇:淺談對數(shù)學(xué)建模的認識范文

論文摘要:目前,在高職院校完整的教育體系中,高職數(shù)學(xué)作為一門重要的公共基礎(chǔ)課程,對學(xué)生今后的發(fā)展具有重要意義。比如在培養(yǎng)學(xué)生思維的嚴密性、邏輯性和抽象性等方面,都有巨大幫助。但是,高職院校的基本教學(xué)目的是培養(yǎng)能夠服務(wù)于社會的實用型專業(yè)人才,在此背景下,如果想要接受系統(tǒng)的、完整的高職數(shù)學(xué)教育已經(jīng)不太可能,但是,必須本著"必需、夠用"的教育理念,根據(jù)專業(yè)需求,對高職數(shù)學(xué)教學(xué)工作進行改革,最大限度的搞好高職數(shù)學(xué)的教學(xué)任務(wù)。

一、高職院校的現(xiàn)狀分析

1.學(xué)生分析

高職院校的學(xué)生中學(xué)數(shù)學(xué)基礎(chǔ)普遍較差,對于他們學(xué)習(xí)銜接性很強的高職數(shù)學(xué)無疑是一大難題。很多學(xué)生學(xué)習(xí)主動性不強,接受知識較慢。還有就是學(xué)習(xí)態(tài)度差,這才是致命的,大部分高職學(xué)生對數(shù)學(xué)缺乏自信心,對于學(xué)習(xí)數(shù)學(xué)的興趣不高,甚至對數(shù)學(xué)存在心理陰影,一味逃避,認為不適合學(xué)數(shù)學(xué)。產(chǎn)生雙差的原因可能是多方面的,但主要的是:學(xué)生對數(shù)學(xué)的學(xué)習(xí)過于盲目,數(shù)學(xué)學(xué)習(xí)目的性不強。

2.教材分析

教材不合理,大多數(shù)高職數(shù)學(xué)教材都是本科的壓縮版,保留很多定理和公式的復(fù)雜證明過程。這些對于基礎(chǔ)較差的同學(xué)無疑是雪上加霜,內(nèi)容上與學(xué)生的實際有很大的脫節(jié),缺乏高職數(shù)學(xué)教育的特色,內(nèi)容與專業(yè)聯(lián)系太少,不僅很難為專業(yè)課服務(wù),而且會使學(xué)生對學(xué)習(xí)數(shù)學(xué)的必要性產(chǎn)生質(zhì)疑,學(xué)習(xí)沒興趣。主要原因在于:目前高職數(shù)學(xué)的版本實在太多,嚴重不統(tǒng)一,學(xué)校選教材就有一定的困難,有些學(xué)校不管什么專業(yè)都用同一本高職數(shù)學(xué)教材。

3.教學(xué)分析

教學(xué)方法單一,大部分高職院校仍幾乎采用黑板配粉筆的教學(xué)模式,很少采1用多媒體和數(shù)學(xué)相關(guān)軟件教學(xué),很難調(diào)動學(xué)生的學(xué)習(xí)積極性。多媒體課件可輕松實現(xiàn)幾何直觀,使課堂教學(xué)形象生動,但利用課件節(jié)奏太快,對高職學(xué)生的理解會造成一定的困難。合理搭配是關(guān)鍵,高職數(shù)學(xué)的教學(xué)方法必須多樣化。

二、教學(xué)改革幾點建議

1.學(xué)生學(xué)習(xí)思想的轉(zhuǎn)變

由于高職學(xué)生的數(shù)學(xué)基礎(chǔ)差,因此他們接觸較為抽象的高職數(shù)學(xué)時,容易產(chǎn)生難學(xué)或厭學(xué)的情緒。有相當一部分學(xué)生純粹為考試而學(xué)習(xí),及格萬歲,這對教學(xué)極為不利。教師可適當插入一點數(shù)學(xué)家的歷史背景或?qū)嶋H生活的故事,以學(xué)習(xí)數(shù)學(xué)的方法、思想和目的等方面為題,師生一起思考和討論,初步引導(dǎo)學(xué)生了解數(shù)學(xué)、喜歡數(shù)學(xué)和掌握數(shù)學(xué),端正學(xué)生的學(xué)習(xí)態(tài)度。課堂教學(xué)以學(xué)生為中心,創(chuàng)造一個良好、和諧、輕松的課堂氣氛,授業(yè)與傳道并重,強調(diào)數(shù)學(xué)與其他科目在學(xué)習(xí)方法上的聯(lián)系與區(qū)別。

了解學(xué)生的實際情況,大綱統(tǒng)一,指導(dǎo)分層。合理控制教與學(xué)的關(guān)系,在教學(xué)中盡量展示數(shù)學(xué)美,使學(xué)生認識數(shù)學(xué)的真正價值。更主要的是使學(xué)生懂得數(shù)學(xué)在本專業(yè)及現(xiàn)實社會的作用及如何用,逐步培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。

2.高職數(shù)學(xué)教材的改革

教材是學(xué)生學(xué)習(xí)的重要工具,高職院校本著基礎(chǔ)理論知識夠用的原則,結(jié)合實際,突出應(yīng)用。教材的選取必須以適應(yīng)高職學(xué)生學(xué)習(xí)和符合專業(yè)特點為前提,取材合理,深度適宜,語言通俗易懂。以生活案例引出知識點,重視重要概念產(chǎn)生的背景。不通過繁瑣的證明讓學(xué)生掌握概念,而是用典型的專業(yè)例題來替代,達到數(shù)學(xué)知識與專業(yè)知識相結(jié)合的效果。盡可能用簡單計算引出公式,用直觀的圖像引出性質(zhì)。

3.教學(xué)方法的改革

高職學(xué)生認知能力比較弱,加上高職基礎(chǔ)課時間少,很多學(xué)生一時很難適應(yīng),新舊知識很難銜接。教師必須注重直觀教學(xué),合理分配教學(xué)時間,保證學(xué)生在課堂上有一定的參與學(xué)習(xí)活動時間。先讓學(xué)生預(yù)習(xí),把學(xué)生自己發(fā)覺的一些問題帶入課堂,討論、研究、教學(xué)、學(xué)習(xí)相結(jié)合,培養(yǎng)學(xué)生自主學(xué)習(xí)和探索問題的能力。講解例題時,不要把重點放在解題上,而是要引導(dǎo)學(xué)生去分析問題,只要學(xué)生明白解題思路和方法,動不動筆根本不重要,這樣不僅可以提高學(xué)生的分析能力,還可以解決學(xué)生聽得懂而自己不會做的問題。

一堂課的重點是確定的,難點卻要看實際情況,任何一個小細節(jié)都可能是死結(jié),教師可通過提問和上臺做練習(xí)等方式及時了解學(xué)生掌握知識的情況,發(fā)現(xiàn)問題及時解決?;仡櫯f知識,注重分析新舊知識存在的聯(lián)系,啟發(fā)誘導(dǎo)學(xué)生學(xué)習(xí)新知識。針對個體差異,調(diào)整教學(xué)內(nèi)容,適當減少理論推導(dǎo),增加基礎(chǔ)操作過程。加入一些多媒體教學(xué),使數(shù)學(xué)知識直觀化、形象化,給學(xué)生一種全新的感覺,便于理解和記憶。加入數(shù)學(xué)實驗輔助教學(xué),讓學(xué)生參與到教學(xué)內(nèi)容中來,從被動接受知識轉(zhuǎn)變成主動探索知識。加入數(shù)學(xué)建模教學(xué),使數(shù)學(xué)知識在實際中的應(yīng)用進一步升華,也是數(shù)學(xué)綜合知識的完美體現(xiàn)。

4.考核方式的改革

考核學(xué)生對數(shù)學(xué)的掌握情況,可將學(xué)生的總評分分成兩大塊,平時成績和期末考成績,平時成績占40%,期末考成績占60%。平時成績主要從小測、課堂表現(xiàn)、出勤、作業(yè)、數(shù)學(xué)建模論文等方面進行考核,可以考核學(xué)生的綜合素質(zhì)。期末考成績可采用半開半閉的考試方式進行考核。數(shù)學(xué)常見繁雜的公式,令學(xué)生望而生畏,尤其是到期末多科目復(fù)習(xí),考試時間緊湊的情況下,為提高學(xué)生的復(fù)習(xí)效果,克服考試畏懼情緒,可實行可攜帶部分考試資料的半開半閉考試法。這種考核的優(yōu)點在于有利于提高學(xué)生復(fù)習(xí)的主動性。在抄公式過程中,學(xué)生可以對教學(xué)內(nèi)容進行全面系統(tǒng)的復(fù)習(xí)。學(xué)生抄寫的過程其實就是對教材內(nèi)容的復(fù)習(xí)和記憶的過程,而且可以減少一些死記硬背知識點對學(xué)生造成的壓力,把精力放在數(shù)學(xué)思想方法的歸納應(yīng)用上,加深了對知識點的理解和鞏固作用??荚噧?nèi)容可以適當加大,難度也可以適當?shù)靥岣?,教師在命題時就可以加大提升綜合應(yīng)用能力的應(yīng)用題。還有就是建立較大試題庫,考教分離,客觀評價教與學(xué),提高教學(xué)效果。

基金項目:河南省軟科學(xué)研究計劃項目(編號:112400440111)

參考文獻

[1]武亮英.高職數(shù)學(xué)教學(xué)中思維培養(yǎng)小議[J].太原大學(xué)教育學(xué)院學(xué)報,2007(2).

[2]盛祥耀.高等數(shù)學(xué)(第2版)[M].北京:高等教育出版社,2004.

[3]單宏強.淺談高職數(shù)學(xué)教學(xué)中學(xué)生能力的培養(yǎng)[J].科教文匯,2007(12).

第9篇:淺談對數(shù)學(xué)建模的認識范文

【關(guān)鍵詞】數(shù)學(xué)思想 數(shù)學(xué)方法 有理數(shù)

Make the cold but beautiful mathematics become the fiery-hot thinking

------The application of the mathematics idea and method in junior rational number teaching

Tian Jue

【Abstract】Bulunuo said that mathematics idea is the soul of mathematics. Therefore, in mathematics learning, we not only should pay attention to the course of knowledge forming, but also should attach importance to the main idea and method that was contained in the course of mathematics knowledge forming and developing. The chapter, Rational Number, is the first chapter that students will learn after they go to the junior high school. In this article, the author wants to make a talk about the embodiment of several kinds of mathematics idea and the problem that will happen at the course of carrying out them.

【Keywords】Mathematics ideaMathematics methodRational number

1.數(shù)學(xué)思想和數(shù)學(xué)方法一般內(nèi)涵的認識。所謂數(shù)學(xué)思想,就是對數(shù)學(xué)知識和方法的本質(zhì)認識,是對數(shù)學(xué)規(guī)律的理性認識。是人們在長期的數(shù)學(xué)活動中提煉出的高層次的觀念性思維形式,它是數(shù)學(xué)科學(xué)和數(shù)學(xué)學(xué)科固有的數(shù)學(xué)靈魂;所謂數(shù)學(xué)方法,就是解決數(shù)學(xué)問題的根本程序,是數(shù)學(xué)思想的具體反映。數(shù)學(xué)思想是數(shù)學(xué)的靈魂,數(shù)學(xué)方法是數(shù)學(xué)的行為。運用數(shù)學(xué)方法解決問題的過程就是感性認識不斷積累的過程,當這種積累達到一定程度時,就會產(chǎn)生飛躍,從而上升為數(shù)學(xué)思想。數(shù)學(xué)思想對數(shù)學(xué)方法起著指導(dǎo)作用。因此,人們通常將數(shù)學(xué)思想和方法看成一個整體概念。若把數(shù)學(xué)知識看作一幅構(gòu)思巧妙的藍圖而建筑起來的一座宏偉大廈,那么數(shù)學(xué)方法相當于建筑施工的手段,而這張藍圖就相當于數(shù)學(xué)思想。

數(shù)學(xué)教育有兩種不同的水平,低級水平是介紹數(shù)學(xué)概念,陳述數(shù)學(xué)定理和公式,指出解題的程式和套路,以便通過考試;而高級水平是著眼于數(shù)學(xué)知識背后的數(shù)學(xué)思想辦法,在解決數(shù)學(xué)問題的過程中進行深層次的數(shù)學(xué)思考,經(jīng)過思維訓(xùn)練,獲得美的享受。誠如一位數(shù)學(xué)教育家所言:數(shù)學(xué)教科書里陳述的數(shù)學(xué),是程式化的數(shù)學(xué),可以說是冰冷的美麗。但是,在數(shù)學(xué)家創(chuàng)立這些數(shù)學(xué)定理和公式的時候,卻是經(jīng)過了火熱的思考。數(shù)學(xué)教學(xué)的任務(wù)就是把數(shù)學(xué)的學(xué)術(shù)形態(tài)轉(zhuǎn)換為學(xué)生易于接受的教育形態(tài),將冰冷美麗的數(shù)學(xué)恢復(fù)為火熱的思考。

日本的米山國藏說:“我搞了多年的數(shù)學(xué)教育,發(fā)現(xiàn)學(xué)生們在初高中接受的數(shù)學(xué)知識因畢業(yè)進入社會后,幾乎沒有什么機會運用這些作為知識的數(shù)學(xué),然而,不管他們從事什么業(yè)務(wù)工作,惟有深深銘刻于頭腦中的數(shù)學(xué)精神、數(shù)學(xué)的思維方法、研究方法和著眼點等,都隨時隨地發(fā)生作用,使他們受益終生?!弊鳛橐幻踔袛?shù)學(xué)教師,筆者有理由也有義務(wù)給學(xué)生一雙數(shù)學(xué)家的眼睛,豐富學(xué)生觀察世界的方式,通過挖掘隱藏在程式化數(shù)學(xué)背后的數(shù)學(xué)思想和數(shù)學(xué)方法,讓學(xué)生將冰冷美麗的數(shù)學(xué)恢復(fù)為火熱的思考。

2.幾種數(shù)學(xué)思想和方法在有理數(shù)教學(xué)中的運用。我們知道,有理數(shù)一章是學(xué)生進入初中的第一章學(xué)習(xí)內(nèi)容,上好初中生入門的第一課,對初一新生開始養(yǎng)成在問題解決中自覺運用數(shù)學(xué)思想方法的意識,有著不可估量的意義。有理數(shù)是整個代數(shù)的基礎(chǔ),有理數(shù)的運算是初等數(shù)學(xué)的基本運算,可以說有理數(shù)一章是整個初等數(shù)學(xué)的奠基石,它所蘊含的豐富內(nèi)容深刻地反映了中學(xué)階段許多重要基本數(shù)學(xué)思想方法。在學(xué)習(xí)有理數(shù)時,除了數(shù)學(xué)基礎(chǔ)知識和基本技能外,還應(yīng)重視數(shù)學(xué)思想方法的認識。這對今后的數(shù)學(xué)學(xué)習(xí)有很大的用處?,F(xiàn)就有理數(shù)學(xué)習(xí)中幾種數(shù)學(xué)思想的體現(xiàn)和實施過程中要注意的問題淺談如下:

2.1數(shù)形結(jié)合的思想。所謂數(shù)形結(jié)合,就是根據(jù)數(shù)與形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的思想,實現(xiàn)數(shù)形結(jié)合。數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。具體到有理數(shù)教學(xué),由于數(shù)軸的出現(xiàn),使有理數(shù)與直線上的點聯(lián)系起來。實現(xiàn)數(shù)和形第一次親密接觸。數(shù)有了形而形象,形有了數(shù)而精確。

如在絕對值教學(xué)中,運用數(shù)形結(jié)合思想,巧妙運用數(shù)形結(jié)合的思想方法解決一些抽象的數(shù)學(xué)問題,可起到事半功倍的效果。如絕對值的幾何意義就是結(jié)合數(shù)軸上兩點間的距離來描述的,即一個數(shù)a的絕對值,就是數(shù)軸上表示數(shù)a的點與原點的距離。

例:已知x>0,y0,試用“

分析:本題可用特值法猜測大小關(guān)系,但這樣只能停留在猜想層面,缺乏嚴密的推理。利用數(shù)軸則可形象、直觀地看出它們的大小關(guān)系。

由題意得,x為正數(shù),y為負數(shù),且x的絕對值大于y的絕對值,-x、x、-y、y在數(shù)軸上表示如下:

由圖象可知:-x

通過上述題例,我們發(fā)現(xiàn),運用數(shù)形結(jié)合思想,不僅直觀易發(fā)現(xiàn)解題途徑,而且能避免復(fù)雜的計算與推理,大大簡化了解題過程。而更為重要的是,我們可以注意培養(yǎng)學(xué)生這種思想意識,讓學(xué)生爭取胸中有圖,見數(shù)想圖,以開拓自己的思維視野。

2.2分類討論的思想。分類討論的解題思想可以作為整體把握的一條主線。在解答某些數(shù)學(xué)問題時,有時會遇到多種情況,需要對各種情況加以分類,并逐類求解,然后綜合得解,這就是分類討論法。分類討論是一種邏輯方法,是一種重要的數(shù)學(xué)思想,同時也是一種重要的解題策略,它體現(xiàn)了化整為零、積零為整的思想與歸類整理的方法。在初一階段,由于學(xué)生概括能力有限,數(shù)學(xué)教材在不少問題的處理上都是采用分類討論的思想來加以敘述的。例如有理數(shù)絕對值的討論,因為有理數(shù)可分為正有理數(shù)、負有理數(shù)和零三類,正有理數(shù)絕對值怎樣,負有理數(shù)絕對值怎樣,零的絕對值又怎樣,把這三個問題討論完了,有理數(shù)的絕對值也就弄清楚了。此外,在有理數(shù)加法法則教學(xué)中,分類討論思想的運用同樣事半功倍。有理數(shù)的加法法則按同號兩數(shù)相加、異號兩數(shù)相加、一個數(shù)同0相加進行分類概括,幫助學(xué)生理解和記憶。

本文為全文原貌 未安裝PDF瀏覽器用戶請先下載安裝 原版全文

又如在數(shù)軸教學(xué)中:點A在數(shù)軸上距原點3個單位,將A點向右移動4個單位長度,再向左移動7個單位長度,此時A點表示的數(shù)是____。學(xué)生錯填:0。

分析:點A可能在原點的右側(cè),也有可能在原點的左側(cè),因此有兩種情況,應(yīng)填0、-6兩個數(shù)。學(xué)生往往只考慮點A在原點右側(cè)的一種情況,忽略另一種情況,原因是沒有分類討論的思想,或不習(xí)慣分類討論。

這就是數(shù)學(xué)中分類討論思想方法的典型應(yīng)用。在教學(xué)中,我們在運用分類討論的思想進行教學(xué)時,首先要指出討論的必要性,培養(yǎng)討論的自覺性。要特別向?qū)W生指出,當面臨的問題不止一個方面時,這時就要討論。例如比較3a與2a的大小,a是什么性質(zhì)的數(shù)?比較3a與2a的大小特殊點是什么呢?因為大小的特殊點是相等,以相等為界來分類。其次,分類要做到標準統(tǒng)一,不重不漏。分類討論的思想不僅對于整個中學(xué)階段的解題教學(xué)將起到十分重要的作用,還可以幫助我們培養(yǎng)學(xué)生全面地觀察事物、靈活地處理問題的能力。

2.3整體思想。在數(shù)學(xué)思想中整體思想是最基本、最常用的數(shù)學(xué)思想。它是通過研究問題的整體形式、整體結(jié)構(gòu),并對其進行調(diào)節(jié)和轉(zhuǎn)化使問題獲解的一種方法。簡單地說就是從整體去觀察、認識問題,從而解決問題的思想。運用整體思想,可以理清數(shù)學(xué)學(xué)習(xí)中的思維障礙,可以使繁難的問題得到巧妙的解決。

在有理數(shù)一章,學(xué)習(xí)了用字母表示數(shù)以后,教師要逐步通過實例,讓學(xué)生認識到字母可以表示任意一個代數(shù)式。反之,將一個代數(shù)式看作一個整體,也可以用一個字母表示,字母不僅可以用來表示一個數(shù),而且還可以用來表示一個式子。例如,|a|中的a,若a表示2x,則|a|表示就是|2x|;若a表示x+1,則|a|就變成了|x+1|,當題目要求我們化簡|2x|和|x+1|(即去掉絕對值符號)時,就需要把絕對值符號內(nèi)的2x和x+1看做一個整體,這就是整體思想在第一章的應(yīng)用。

筆者在數(shù)學(xué)教學(xué)過程中,常常會看到這樣的現(xiàn)象,看似簡單的問題,學(xué)生卻做不出或解錯。學(xué)生整體意識的形成與運用,需要教師結(jié)合數(shù)學(xué)教學(xué)內(nèi)容逐步滲透,不能脫離具體的數(shù)學(xué)內(nèi)容抽象地講授,要通過學(xué)生在學(xué)習(xí)數(shù)學(xué)和運用數(shù)學(xué)、解決數(shù)學(xué)過程中形成。教師在教學(xué)中要對學(xué)生的思維循序漸進地、有計劃地進行引導(dǎo)和訓(xùn)練,引導(dǎo)學(xué)生自己去歸納、總結(jié)、提煉其中的數(shù)學(xué)思想,使其能縱觀全局,從整體的角度去把握問題。

2.4化歸思想?;瘹w思想是解決數(shù)學(xué)問題的一種重要思想方法。在有理數(shù)運算法則中處處體現(xiàn)了這種化歸思想。在有理數(shù)的加法基礎(chǔ)上,利用相反數(shù)概念,化歸出減法法則,使加、減法統(tǒng)一起來,得到代數(shù)和的概念。同樣在有理數(shù)乘法運算的基礎(chǔ)上,利用倒數(shù)的概念,化歸出除法運算法則,使互逆的兩種運算得到統(tǒng)一,運用絕對值概念將有理數(shù)運算化歸為算術(shù)數(shù)的運算等。例如與絕對值有關(guān)的化簡或計算問題,解題的思路是利用 去掉絕對值符號,化歸(或叫轉(zhuǎn)化)為不含絕對值符號的數(shù)或式子的化簡或計算。

可見,數(shù)學(xué)中利用化歸思想方法,可以另辟蹊徑,解決新問題,獲得新知識。同學(xué)們在有理數(shù)一章學(xué)習(xí)中,注重其化歸思想,那么在今后學(xué)習(xí)中,運用化歸思想會更加意識化。

2.5數(shù)學(xué)建模思想。通常人們所說的模型是指所研究的客觀事物有關(guān)屬性的模擬,它具有事物中我們感興趣的主要性質(zhì)。模型可以是對實體的模擬,如展廳中的模型飛機。模型也可以是對實體某些屬性的模擬,如一張地質(zhì)圖是某地區(qū)地貌情況的模擬。任何一個模型都可以看成一個真實系統(tǒng)某一方面的理想化。

數(shù)學(xué)模型是一種抽象的模擬,它用數(shù)學(xué)符號、數(shù)學(xué)公式、程序、圖、表等刻畫客觀事物的本質(zhì)屬性與內(nèi)在聯(lián)系,是現(xiàn)實世界的簡化而本質(zhì)的描述。數(shù)學(xué)模型是為一定目的對部分現(xiàn)實世界而做的抽象、簡化的數(shù)學(xué)結(jié)構(gòu)。

創(chuàng)建一個數(shù)學(xué)模型的全過程稱為數(shù)學(xué)建模,即運用數(shù)學(xué)的語言、方法去近似的刻畫該實際問題,并加以解決的全過程。

為解決一個實際問題,建立數(shù)學(xué)模型是一種有效、可靠的方法。例如“隊列操練中的數(shù)學(xué)”:一次團體操排練活動中,某班35名同學(xué)面向老師站成一列橫隊。老師每次讓其中的任意4名同學(xué)向后轉(zhuǎn)(不論原來的方向如何),能否經(jīng)過若干次后全體學(xué)生都背向老師站立?如果能,請你設(shè)計一個方案;如果不能,請說明理由。

分析:這個問題似乎與數(shù)學(xué)無關(guān),卻難以入手。我們注意到學(xué)生站立有兩個方向,與具有相反意義的量相似,向后轉(zhuǎn)可以想象成進行一次運算,或改變一個符號,我們能否設(shè)法聯(lián)系有理數(shù)的知識進行討論?我們可以這樣建立數(shù)學(xué)模型:假設(shè)每個學(xué)生胸前有一個號碼牌,上面寫著“+1”,背后有一塊號碼牌,上面寫著“-1”,那么35個學(xué)生,全體面向老師,胸前35個“+1”的乘積為“+1”如果全部背向老師,35個“-1”的乘積為“-1”。再觀察4名學(xué)生向后轉(zhuǎn)進行的是什么運算。我們設(shè)想老師不叫向后轉(zhuǎn),而是這4名學(xué)生對著老師的數(shù)字都乘“-1”。這樣每次“運算”乘4個“-1”,即乘“+1”,所以35個數(shù)的乘積不變,始終是“+1”,因此乘積變?yōu)椤?1”是不可能的。也就是說,老師每次讓其中的4名同學(xué)向后轉(zhuǎn)(不論原來的方向如何),經(jīng)過若干次后全體學(xué)生不能都背向老師站立。

培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,首先要發(fā)展觀察力,形成洞察力。面對錯綜復(fù)雜的實際問題,能抓住問題的要點逐步剔除冗余的信息,使問題趨于明確,得出解決問題的重點和難點。但是,洞察力的形成不是一朝一夕的事。對于剛進入中學(xué)的初一學(xué)生,我們不能過分拔高,而是著重于培養(yǎng)學(xué)生的想象力和聯(lián)想能力。著名的物理學(xué)家愛因斯坦曾說過:“想象力比知識更重要,因為知識是有限的,而想象力概括著世界上的一切,推動著進步?!痹诮_^程中往往要求學(xué)生充分發(fā)揮聯(lián)想,把表面上完全不同的實際問題用相同或相似的數(shù)學(xué)模型去描述它們,培養(yǎng)學(xué)生廣泛的興趣,勤思考,勤練習(xí),逐步達到觸類旁通的境界。

通過以上的案例,我們可以看出,由于數(shù)學(xué)思想方法的呈現(xiàn)形式常常是隱蔽的,學(xué)生難以從教材中獲取,要求教師必須深入研究教材,努力挖掘教材在各個環(huán)節(jié)中所滲透的數(shù)學(xué)思想方法,提出相應(yīng)的具體要求。在教學(xué)中,教師向?qū)W生充分展示知識的形成過程,讓學(xué)生反復(fù)體驗其中數(shù)學(xué)思想方法的導(dǎo)向功能,就會在學(xué)生思維意識中打下數(shù)學(xué)思想方法的烙印,從而上升為數(shù)學(xué)形為背后的內(nèi)驅(qū)力,使學(xué)生具有良好的數(shù)學(xué)素養(yǎng)。

參考文獻

1 張順燕.數(shù)學(xué)的思想、方法和應(yīng)用.北京大學(xué)出版社, 2003.5月修訂版

2 張奠宙、宋乃慶.數(shù)學(xué)教育概論.高等教育出版社,2004

3 胡炯濤.數(shù)學(xué)教學(xué)論[M].南寧:廣西教育出版社,1996

4 張奠宙.中學(xué)代數(shù)研究.高等教育出版社,2006.1

5 徐全智、楊晉浩.數(shù)學(xué)建模.高等教育出版社,2003.第一版

6 宋佰濤.非常講解.天津人民出版社,2007