前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的模式識別技術(shù)主題范文,僅供參考,歡迎閱讀并收藏。
關(guān)鍵詞:模式識別;語音識別;交互式語音應(yīng)答;司法社區(qū)矯正
中圖分類號:TP391.41 文獻(xiàn)標(biāo)識碼:A
Abstract:Systematic research was done on the specific algorithm for speech recognition in using genetic algorithm to train continuous hidden Markov mode. Then the detailed design of Voiceprint Recognition System of Community Correction Objects in the Shenzhen City Bureau of Justice has been done based on the speech recognition technology. The system running results show that the recognition rate of recognition algorithm using genetic algorithm to train continuous hidden Markov model is faster and has a higher rate of recognition. Construction of voiceprint recognition system of judicial community correction objects based on pattern recognition is still in the junior stage in our judicial system, and promotion and the construction of voiceprint recognition system of judicial community correction objects have the important practical significance.
Key words:pattern recognition;speech recognition;interactive voice response;judicial community correction
1 利用基因算法訓(xùn)練連續(xù)隱馬爾柯夫模型的語音識別以及具體算法
作為模式識別重要應(yīng)用之一的語音識別技術(shù)所涉及的領(lǐng)域包括信號處理、模式識別、概率論和信息論、發(fā)聲機(jī)理和聽覺機(jī)理、人工智能等等。近年來,在生物識別技術(shù)領(lǐng)域中,聲紋識別技術(shù)以其獨(dú)特的方便性、經(jīng)濟(jì)性和準(zhǔn)確性等優(yōu)勢受到世人矚目,并日益成為人們?nèi)粘I詈凸ぷ髦兄匾移占暗陌踩?yàn)證方式。
隱馬爾柯夫模型(Hidden Markov Model,HMM)方法是二十世紀(jì)70年代引入語音識別理論的,它的出現(xiàn)使得自然語音識別系統(tǒng)取得了實(shí)質(zhì)性的突破,現(xiàn)已成為語音識別的主流技術(shù)[1-4] ,該方法在語音識別時識別速度較快,也有較高的識別率。目前大多數(shù)大詞匯量、連續(xù)語音的非特定人語音識別系統(tǒng)都是基于HMM模型的。HMM是對語音信號的時間序列結(jié)構(gòu)建立統(tǒng)計模型,將之看作一個數(shù)學(xué)上的雙重隨機(jī)過程:一個是用具有有限狀態(tài)數(shù)的Markov鏈來模擬語音信號統(tǒng)計特性變化的隱含的隨機(jī)過程,另一個是與Markov鏈的每一個狀態(tài)相關(guān)聯(lián)的觀測序列的隨機(jī)過程。前者通過后者表現(xiàn)出來,但前者的具體參數(shù)是不可測的。人的言語過程實(shí)際上就是一個雙重隨機(jī)過程,語音信號本身是一個可觀測的時變序列,是由大腦根據(jù)語法知識和言語需要(不可觀測的狀態(tài))發(fā)出的音素的參數(shù)流??梢奌MM合理地模仿了這一過程,很好地描述了語音信號的整體非平穩(wěn)性和局部平穩(wěn)性,是較為理想的一種語音模型。
在HMM(隱馬爾柯夫模型)中,分為離散HMM(DHMM)和連續(xù)HMM(CHMM)。由于CHMM直接以幀語音特征向量本身為觀測序列,而不是像DHMM那樣先將語音特征向量經(jīng)矢量量化為觀測符號,因此CHMM有優(yōu)于DHMM的識別精度。然而,由于CHMM參數(shù)多,傳統(tǒng)的訓(xùn)練方法采用迭代法,先假設(shè)初始值,用語音信號的觀測序列對該初始值進(jìn)行訓(xùn)練,也即按照一定的方法對這些估值進(jìn)行提純,對提純了的估值要接著進(jìn)一步的提純,直到再沒有改進(jìn)的余地,達(dá)到某個局部最佳值為止。傳統(tǒng)的訓(xùn)練方法不保證訓(xùn)練得到全域最優(yōu)解,而且訓(xùn)練所需要的時間非常巨大。
本文側(cè)重地研究了基因算法[5],并按照CHMM的特點(diǎn)構(gòu)造染色體,用基因算法對CHMM進(jìn)行訓(xùn)練?;蛩惴ㄗ陨淼奶攸c(diǎn)使得訓(xùn)練結(jié)果趨向于全域最優(yōu)解。同時,由于只需要用Viterbi算法計算語音的觀測序列對某一CHMM模型的相關(guān)概率,用作基因算法的適應(yīng)函數(shù),故該算法可以提高CHMM的訓(xùn)練速度。
基因是生物學(xué)概念,之所以將基因算法引入HMM的訓(xùn)練中,是因?yàn)镠MM的訓(xùn)練過程實(shí)際上是一個在特定范圍內(nèi)將HMM模型進(jìn)行一次次的迭代提純,選擇最優(yōu)模型的過程。將基因算法引入CHMM的訓(xùn)練,就是基于將CHMM看作在特定域的有約束的尋找最佳匹配點(diǎn)的問題。CHMM的狀態(tài)轉(zhuǎn)移矩陣A和輸出概率密度函數(shù)中的混合系數(shù)c矩陣的每一行向量之和為1.0,可看作是優(yōu)化問題的約束條件。如果在選取CHMM的初始值時,不是選取一個初始值,而是選取一組分布于不同區(qū)域的初始值,以某一種特定的訓(xùn)練方法,使其趨向于全域最優(yōu)解,那么最終也同樣可以完成對CHMM的訓(xùn)練。
根據(jù)待優(yōu)化問題的數(shù)學(xué)模型,定義適合函數(shù)F(ai)。其中ai是某一條染色體,則適合函數(shù)F(ai)就是該染色體與目標(biāo)函數(shù)的距離,或是判斷該染色體優(yōu)劣的依據(jù)。對每一代基因,計算所有染色體的適合函數(shù),進(jìn)行排序選擇一定數(shù)目較優(yōu)秀的染色體,作為生成下一代基因的父代樣本。自然界中染色體成對出現(xiàn),時一對染色體分離、重組。多點(diǎn)交叉在實(shí)現(xiàn)時,可以設(shè)定交叉概率門限為ρc。染色體的長度為L,對于隨機(jī)數(shù)0≤rj≤1 (j=1,2,…,L),如果rj≥ρc,那么下一個變量屬于另一條基因,否則下一個變量與前一個變量屬于同一條基因。
最佳基因是在一代一代的基因重組和基因突變中形成的,是在選擇的作用下最適應(yīng)的個體。基因突變有利于從局部最佳處跳出,防止算法的過早收斂。設(shè)定突變概率門限為ρm,對于隨機(jī)數(shù)0≤rj≤1 (j=1,2,…,L),如果rj≤ρm,那么染色體中第j個變量有突變現(xiàn)象發(fā)生;否則,復(fù)制原染色體的第j個變量。
基因算法的具體實(shí)現(xiàn)步驟參考文獻(xiàn)[5]。
HMM是用一個有限狀態(tài)系統(tǒng)作為語音特征參數(shù)的生成模型,每個狀態(tài)能產(chǎn)生連續(xù)的輸出特征。HMM實(shí)際上是一個特征參數(shù)發(fā)生器,依據(jù)其產(chǎn)生的參數(shù)與觀察到的語音參數(shù)的比較,從而識別語音。在識別時的判決依據(jù)是HMM模型的生成概率。
在將基因算法引入CHMM訓(xùn)練的過程中,首先要解決的是染色體的構(gòu)造問題。將CHMM模型的所有關(guān)鍵特征參數(shù)排列成一串,構(gòu)成染色體。對于語音識別,采用自左向右的HMM模型,本文中為5狀態(tài)自左向右只含一階跳轉(zhuǎn)的CHMM模型。CHMM模型中參數(shù)由初始狀態(tài)向量π,狀態(tài)轉(zhuǎn)移矩陣A和每個狀態(tài)的輸出概率密度函數(shù)組成。
在CHMM模型中,染色體前一部分的行向量之和均為1。也就要求在產(chǎn)生染色體時,需對其進(jìn)行一定的控制。在生成每一代染色體時,對這一部分行向量所對應(yīng)的每一段染色體進(jìn)行歸一化,則可以滿足CHMM的約束條件。
Viterbi算法在通常的CHMM語音識別中是作為識別算法的,換句話說,使觀測序列與CHMM模型經(jīng)Viterbi算法的運(yùn)算結(jié)果最大即為優(yōu)化目標(biāo)?;谶@樣的思想,基因算法的適合函數(shù)為:所有該CHMM對應(yīng)的觀測序列用Viterbi算法求其觀測概率之和,運(yùn)算結(jié)果越大,則該染色體越優(yōu)秀。
在實(shí)驗(yàn)中染色體的前一部分依概率進(jìn)行二點(diǎn)或多點(diǎn)交叉,而后一部分染色體只進(jìn)行多點(diǎn)交叉,多點(diǎn)交叉概率ρc=0.8。染色體前一段的基因突變概率ρm=0.1;而對于染色體的后一部分,取ρm1=0.01,對應(yīng)于以一個參數(shù)為單位發(fā)生基因突變;ρm2=0.08,以行向量為單位發(fā)生基因突變。經(jīng)基因交叉或基因突變后,對染色體的前一部分需要進(jìn)行各行向量的歸一化處理。每一代基因的數(shù)目為300,從中選出60條優(yōu)秀的染色體作為新的父代基因,經(jīng)基因重組和基因突變生成240條染色體,共同組成新一代染色體。CHMM模型的訓(xùn)練問題現(xiàn)已轉(zhuǎn)化為求其對觀測序列適應(yīng)概率最大值的問題,用基因算法求解。
訓(xùn)練數(shù)據(jù)取自博域通訊一體化呼叫中心平臺產(chǎn)品BYICC2.0的IVR服務(wù)器在實(shí)際商業(yè)運(yùn)行中產(chǎn)生的WAV錄音文件2000個。
2 利用基因算法訓(xùn)練連續(xù)隱馬爾柯夫模型的語音識別技術(shù)在深圳市司法局社區(qū)矯正聲紋識別系統(tǒng)中的應(yīng)用介紹
2.1 司法社區(qū)矯正的需求背景以及存在問題
司法社區(qū)矯正,是指將社區(qū)矯正對象置于社區(qū)內(nèi),由專門的國家機(jī)關(guān)負(fù)責(zé)并組織社會力量對其采取監(jiān)督管理、教育、幫助措施,矯正其犯罪心理和行為惡習(xí),促進(jìn)其順利回歸社會的非監(jiān)禁刑罰執(zhí)行活動。盡管目前我國社區(qū)矯正工作中較普遍地應(yīng)用了信息化管理手段,根據(jù)社區(qū)矯正的刑罰執(zhí)行性質(zhì)和非監(jiān)禁特征,各地積極探索運(yùn)用手機(jī)定位等現(xiàn)代科技手段加強(qiáng)對社區(qū)矯正人員的實(shí)時監(jiān)管,具體的監(jiān)管手段包含:手機(jī)實(shí)時定位監(jiān)控、電子地圖越界告警、人機(jī)分離抽查等?,F(xiàn)階段,很多司法社區(qū)矯正工作中應(yīng)用到了諸如手機(jī)實(shí)時定位監(jiān)控等高科技手段來實(shí)現(xiàn)對社區(qū)矯正人員的監(jiān)控,但在具體操作中仍然存在一些問題和障礙,主要在現(xiàn)有手機(jī)定位監(jiān)控的技術(shù)下,難以有效控制人為出現(xiàn)的“人機(jī)分離”現(xiàn)象?,F(xiàn)有“人機(jī)分離”抽查手段主要有:電話抽查、短信抽查、拍照抽查等。雖然一定程度上降低了矯正對象“人機(jī)分離”的風(fēng)險,但這些抽查手段皆無法確保是否為矯正對象本人,有脫管、漏管的可能性。
正是基于以上原因,博域通訊推出的社區(qū)矯正聲紋識別系統(tǒng)的主要功能是通過遠(yuǎn)程電話錄音來對社區(qū)矯正人員進(jìn)行身份認(rèn)證,結(jié)合手機(jī)定位監(jiān)控系統(tǒng),促進(jìn)社區(qū)矯正工作向合理化、人性化、智能化、效率化方向發(fā)展,推動社區(qū)矯正信息化建設(shè),并有效破解移動定位監(jiān)管“人機(jī)分離”的難題。
2.2 深圳市司法局社區(qū)矯正聲紋識別系統(tǒng)設(shè)計
2.2.1 系統(tǒng)應(yīng)用體系架構(gòu)
社區(qū)矯正聲紋識別方案中,包括聲紋識別系統(tǒng)、IVR自動語音服務(wù)系統(tǒng)并結(jié)合現(xiàn)有的手機(jī)定位系統(tǒng)以及后臺管理系統(tǒng),同時,聲紋識別服務(wù)也涉及到了數(shù)據(jù)庫服務(wù)器之間的數(shù)據(jù)通信。
2.2.2 系統(tǒng)網(wǎng)絡(luò)架構(gòu)
被矯正人員通過撥打固定電話號碼接入社區(qū)矯正聲紋識別系統(tǒng),由內(nèi)置電話語音板卡的IVR服務(wù)器將采集到的客戶語音,并通過調(diào)用聲紋服務(wù)器提供的接口函數(shù)與聲紋識別服務(wù)器進(jìn)行交互。聲紋服務(wù)器將識別的結(jié)果反饋給IVR服務(wù)器以便進(jìn)行相應(yīng)的IVR語音流程控制,同時,社區(qū)矯正聲紋識別系統(tǒng)將被矯正人員的聲紋身份識別結(jié)果反饋給手機(jī)定位系統(tǒng)。其網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)圖如圖3所示。
2.2.3 系統(tǒng)業(yè)務(wù)流程
深圳市司法局社區(qū)矯正聲紋識別系統(tǒng)與現(xiàn)有手機(jī)定位系統(tǒng)結(jié)合后的主要業(yè)務(wù)流程如下圖:
2.2.4 系統(tǒng)運(yùn)行結(jié)果主要指標(biāo)
利用基因算法訓(xùn)練連續(xù)隱馬爾柯夫模型的語音識別的司法社區(qū)矯正聲紋識別系統(tǒng)已于2014年1月在深圳市司法局上線投入運(yùn)行。
聲紋識別技術(shù)在實(shí)際應(yīng)用中,會根據(jù)說話人識別內(nèi)容的不同分為文本相關(guān)驗(yàn)證和文本無關(guān)驗(yàn)證。深圳市司法局社區(qū)矯正聲紋識別系統(tǒng),支持這兩種方式的驗(yàn)證,根據(jù)實(shí)際工作和業(yè)務(wù)的需要,用戶可以選擇適合自己的聲紋驗(yàn)證方式。
同時,與手機(jī)實(shí)時定位監(jiān)控、電子地圖越界告警、電話抽查、短信抽查等傳統(tǒng)監(jiān)管手段相比較,語音識別技術(shù)有效地控制了司法社區(qū)矯正中人為出現(xiàn)的“人機(jī)分離”現(xiàn)象。
3 結(jié)束語
模式識別從20世紀(jì)20年展至今,人們的一種普遍看法是不存在對所有模式識別問題都適用的單一模型和解決識別問題的單一技術(shù),我們現(xiàn)在擁有的只是一個工具袋,所要做的是結(jié)合具體問題把統(tǒng)計的和句法的識別結(jié)合起來,把統(tǒng)計模式識別或句法模式識別與人工智能中的啟發(fā)式搜索結(jié)合起來,把統(tǒng)計模式識別或句法模式識別與支持向量機(jī)的機(jī)器學(xué)習(xí)結(jié)合起來,把人工神經(jīng)元網(wǎng)絡(luò)與各種已有技術(shù)以及人工智能中的專家系統(tǒng)、不確定推理方法結(jié)合起來,深入掌握各種工具的效能和應(yīng)有的可能性,互相取長補(bǔ)短,開創(chuàng)模式識別應(yīng)用的新局面?;谀J阶R別技術(shù)的司法社區(qū)矯正聲紋識別系統(tǒng)能夠有效地破解移動定位監(jiān)管“人機(jī)分離”的難題,其建設(shè)工作在我國司法系統(tǒng)目前尚處于起步階段,推廣和建設(shè)司法社區(qū)矯正聲紋識別系統(tǒng)具有重要的現(xiàn)實(shí)意義。
參考文獻(xiàn)
[1] 劉伯高.化工過程推斷估計的若干問題研究[D].華東理工大學(xué)博士論文.華東理工大學(xué)圖書館,2000.
[2] 王嵐,陳晶,王睿,等.幾種模式識別方法在生物信息中的應(yīng)用[J]. 計算機(jī)與應(yīng)用化學(xué),2007,(1):8-12.
[3] 楊海峰,張德祥.模式識別理論和技術(shù)在語音識別研究中的應(yīng)用[J].合肥學(xué)院學(xué)報:自然科學(xué)版, 2009,(1):40-46.
船舶運(yùn)動模式的提取是軌跡數(shù)據(jù)分析的重要任務(wù),它可以為船舶異常行為的檢測提供參考依據(jù),同時也可以作為航路規(guī)劃和定線制設(shè)計的技術(shù)指標(biāo).針對現(xiàn)存的聚類算法大多為了追求效率而忽略了運(yùn)動軌跡特征的問題,對聚類算法中的軌跡結(jié)構(gòu)距離進(jìn)行改進(jìn),將其作為軌跡相似度的評價標(biāo)準(zhǔn).采用無監(jiān)督DBSCAN聚類算法實(shí)現(xiàn)船舶運(yùn)動模式的提取.利用瓊州海峽船舶自動識別系統(tǒng)(AutomaticIdentificationSystem,AIS)數(shù)據(jù),對該水域的船舶運(yùn)動模式進(jìn)行提取,獲得行駛于該水域的船舶運(yùn)動軌跡分布以及各類軌跡中轉(zhuǎn)向區(qū)域的分布,其中船舶運(yùn)動軌跡包括從瓊州海峽東峽口向西航行的船舶軌跡,從瓊州海峽西峽口向東航行的船舶軌跡,從秀英港前往海安港的船舶軌跡,從海安港前往秀英港的船舶軌跡和從瓊州海峽東峽口前往??诟鄣拇败壽E.將最終的聚類結(jié)果應(yīng)用于電子海圖顯示與信息系統(tǒng)(ElectronicChartDisplayandInformationSystem,ECDIS)上,實(shí)現(xiàn)了對船舶的動態(tài)監(jiān)控仿真.
關(guān)鍵詞:
船舶自動識別系統(tǒng)(AIS);模式識別;聚類分析;電子海圖顯示與信息系統(tǒng)(ECDIS);瓊州海峽
中圖分類號:U697.33
文獻(xiàn)標(biāo)志碼:A 收稿日期:20150907 修回日期:20151102
0引言
隨著全球船舶自動識別系統(tǒng)(AutomaticIdentificationSystem,AIS)岸站的建立和不斷完善,各地海事主管機(jī)關(guān)時刻都能接收到大量有關(guān)船舶信息的數(shù)據(jù).對這些數(shù)據(jù)的研究可以幫助我們提取船舶運(yùn)動模式,分析船舶行為,從而進(jìn)一步挖掘不同航線船舶、不同類型船舶的運(yùn)動特點(diǎn).例如:在一些運(yùn)量較大的港口附近,對船舶運(yùn)動軌跡進(jìn)行分類能夠幫助監(jiān)控人員識別異常行為;根據(jù)漁船運(yùn)動的無規(guī)律性和貨船運(yùn)動的周期性,利用聚類結(jié)果區(qū)分船舶種類,判斷運(yùn)動特征是否與船舶類型相符,是否需要進(jìn)一步的監(jiān)控和調(diào)查.此外,船舶運(yùn)動軌跡的聚類分析能夠?yàn)楹铰芬?guī)劃和定線制的設(shè)計提供理論依據(jù),有利于加強(qiáng)船舶動態(tài)監(jiān)控,提高海事監(jiān)管的效率.
目前國內(nèi)外學(xué)者提出了諸多從目標(biāo)對象的軌跡中獲取運(yùn)動模式的方法.SHU等[1]利用自組織映射網(wǎng)絡(luò)作為預(yù)處理技術(shù)標(biāo)記行人的運(yùn)動特征,然后采用后向算法建立馬爾科夫模型,實(shí)現(xiàn)了對人行為模式的提?。缓暧畹萚2]以改進(jìn)的Hausdorff距離作為相似度標(biāo)準(zhǔn),采用譜聚類算法實(shí)現(xiàn)了對車輛軌跡空間分布的提?。宦劶训萚3]利用加權(quán)的Hausdorff距離和周分割算法實(shí)現(xiàn)了車輛軌跡的聚類;RISTIC等[4]基于港口信息,采用核密度估計的方法對船舶軌跡進(jìn)行分類;ETIENNE等[5]提出了一種基于統(tǒng)計學(xué)和圖論的軌跡聚類分析方法,該方法將船舶的起訖港作為節(jié)點(diǎn),將相似軌跡歸一化為特定的有向路徑;AARSETHER等[6]采用圖像匹配的方法對船舶軌跡進(jìn)行聚類;GERBEN等[7]對提取船舶運(yùn)動模式的兩種主要的相似度對比的方法進(jìn)行了分析,總結(jié)出二者中更適合于船舶軌跡聚類的方法;ANDERS等[8]將軌跡聚類應(yīng)用于近海監(jiān)控系統(tǒng)來識別船舶的異常行為;LAXHAMMAR等[9]通過高斯混合模型和核密度估計的方法對船舶運(yùn)動進(jìn)行統(tǒng)計分析,獲得有異常行為的船舶數(shù)據(jù).此外,神經(jīng)網(wǎng)絡(luò)和以K均值為代表的無監(jiān)督聚類方法也被廣泛應(yīng)用于軌跡聚類,如JONHSON等[10]建立自組織特征映射網(wǎng)絡(luò)學(xué)習(xí)軌跡分布模式,ATEV等[11]則利用K均值算法完成對軌跡的聚類.
海上交通與陸路交通有一定的相似性.道路被劃分為單行道、雙行道等,而航路也被劃分為單向航路和雙向航路.雖然海上交通的航行范圍廣闊,但在某些特定水域(港口、通航分道、狹水道)船舶密度較大,軌跡分布較密集.鑒于此特點(diǎn),應(yīng)用在陸路交通上的一些方法也可以應(yīng)用到海上交通,以提高海上交通的監(jiān)管力度和效率.
1AIS數(shù)據(jù)的預(yù)處理
由船舶交通管理中心(VesselTrafficServicecenter,VTS)提供的AIS數(shù)據(jù)通常具有較高的可信度,但是AIS數(shù)據(jù)中的船舶位置、船舶速度等信息會由于設(shè)備以及信號漂移等原因發(fā)生較大的改變,如AIS數(shù)據(jù)顯示船舶位于陸地上,顯示航速為35kn甚至更高[12].
為保證數(shù)據(jù)的可用,需要對數(shù)據(jù)做預(yù)處理,具體方法如下.
2軌跡聚類
移動目標(biāo)軌跡的聚類能否取得良好的效果,在于軌跡間的相似性度量是否合理.當(dāng)前主要的相似性度量的方法有基于歐氏距離的算法、基于公共子序列的算法、基于動態(tài)時間彎曲距離的方法和基于Hausdorff距離的方法,其中基于歐氏距離的算法通常用于計算等長的船舶軌跡相似性,其他的幾種方法可以用于不同長度的船舶軌跡相似性計算.以上方法都僅從距離方面反映相似度,而基于軌跡結(jié)構(gòu)距離的相似性度量方法的優(yōu)點(diǎn)在于能夠刻畫每條子軌跡變化的趨勢.因此,為便于度量船舶軌跡的變化,需要將整條軌跡劃分成若干條子軌跡.
2.1軌跡分割
船舶軌跡的劃分是通過設(shè)置船舶轉(zhuǎn)向角的閾值實(shí)現(xiàn)的.船舶軌跡轉(zhuǎn)向角是指相鄰兩個子軌跡段的航跡向之差,見圖1.
圖1中,a,b為軌跡中的兩條子軌跡段,其航跡向的夾角為θ1,即為這兩條子軌跡的轉(zhuǎn)向角.鑒于AIS數(shù)據(jù)的位置坐標(biāo)采用的是WGS84坐標(biāo)系,利用恒向線直接反解算法[13]求得兩條子軌跡段的航跡向,根據(jù)其航跡向的差值可以獲得船舶子軌跡間的轉(zhuǎn)向角.
恒向線直接反解算法的步驟如下.
2.2軌跡結(jié)構(gòu)相似性度量
船舶子軌跡段相似性計算從子軌跡段的航跡向和兩條子軌跡段間的距離兩個方面進(jìn)行.對兩方面的度量結(jié)果賦以一定的權(quán)重求和,形成軌跡的結(jié)構(gòu)距離.
(1)船舶航跡向的比較.
如圖2所示,Li,Lj表示兩條航跡線,θ表示航跡段的方向夾角,J表示Lj相對于Li的偏轉(zhuǎn)程度.
航跡向?qū)Ρ确椒?/p>
通過上式不難發(fā)現(xiàn):當(dāng)夾角為0°時為最佳狀態(tài),即兩條子軌跡方向完全一致;當(dāng)夾角大于90°時可以認(rèn)為兩條軌跡基本反向,將兩條軌跡的距離設(shè)置為無窮大,這樣有利于區(qū)分航向相反船舶的軌跡.
(2)位置的比較.
本文在兩條子軌跡段間距離的度量方面所采用的相似性度量方法為基于Hausdorff距離的方法:
式中:P(Li,Lj)為兩軌跡間的位置距離;h(Li,Lj)為兩軌跡間的直接Hausdorff距離;d(a,b)為a與b之間的歐氏距離.
船舶軌跡結(jié)構(gòu)是指船舶軌跡所具有的屬性的集合,這些屬性刻畫了船舶軌跡的特性和狀態(tài).船舶軌跡結(jié)構(gòu)通常包含船舶運(yùn)動信息,如:船舶的航跡向、船舶的位置.同時,在實(shí)際應(yīng)用中還可以加入速度以及波動性的度量.進(jìn)行軌跡相似性的比較時,充分考慮這些因素可以提高聚類的精度[14].依照式(8)和(9)可以求得子軌跡航跡向以及子軌跡間距離相似度.為計算軌跡結(jié)構(gòu)的相似性,還需設(shè)定他們在軌跡結(jié)構(gòu)中所占的權(quán)重W=(WT,WP),其中WT表示角度距離權(quán)重,WP表示位置距離權(quán)重.各權(quán)重值設(shè)定應(yīng)滿足:權(quán)重值之和應(yīng)為1;各權(quán)重值應(yīng)為非負(fù),同時不能大于1.通常情況下采用的是將結(jié)構(gòu)距離中的權(quán)重平均分配.式(11)和(12)分別為結(jié)構(gòu)距離和相似度計算方法.
2.3聚類算法
基于軌跡結(jié)構(gòu)距離的聚類算法是以DBSCAN算法為框架的,即從子軌跡集合中任取一條軌跡并判斷在其鄰域半徑內(nèi)是否包含滿足要求的最小實(shí)體數(shù).如果滿足以上述條件,則認(rèn)為是核實(shí)體,并搜索該實(shí)體的密度可達(dá)對象,標(biāo)記為一類,直至子軌跡集合全部掃描完畢,未被標(biāo)記的子軌跡則是孤立軌跡.具體的實(shí)現(xiàn)方法如下.
步驟1設(shè)定權(quán)重W,轉(zhuǎn)向角閾值ω,近鄰閾值η,近鄰的數(shù)目ε.
步驟2根據(jù)ω將軌跡T分割成若干個子軌跡Ti.
步驟3對子軌跡段Ti,計算其與未標(biāo)記的子軌跡段的D和N,若滿足D和N條件的軌跡數(shù)目大于ε則將該子軌跡段標(biāo)記為核心子軌跡段.
步驟4將Ti子軌跡段距離范圍D內(nèi)滿足N條件的子軌跡段Tj與Ti聚為一類.
步驟5對Tj重復(fù)步驟3和4,將滿足條件的子軌跡段繼續(xù)歸為一類,如果Tj不再滿足上述條件,則重新從子軌跡集合中選取未被聚類的子軌跡段重復(fù)步驟3和4.直至軌跡集合全部掃描完畢.
3瓊州海峽應(yīng)用實(shí)例與應(yīng)用
瓊州海峽位于雷州半島與海南島之間,寬10~20nmile,長50~60nmile,是廣州港、湛江港等港口與北部灣各港口海上交通的捷徑.瓊州海峽主要可分為3部分,分別為:瓊州海峽東口,包括外羅水道、北水道、中水道和南水道;瓊州海峽西口,包括燈樓角與臨高角聯(lián)線以西、兵馬角所在經(jīng)度線以東水域,該水域是來往于瓊州海峽駛往八所港、三亞港等地的轉(zhuǎn)向點(diǎn),也是往北部灣各港口的轉(zhuǎn)向點(diǎn);瓊州海峽中部,包括山狗吼燈塔經(jīng)度線以西、燈樓角與臨高角聯(lián)線以東水域,該水域的水較深(20~118m),礙航物較少.
算例采用32位WIN7系統(tǒng)、2GRAM,在VS2010編譯條件下提取750條船舶運(yùn)動軌跡進(jìn)行聚類,獲得了5類結(jié)果,見圖3.A類結(jié)果為從瓊州海峽東峽口向西行駛于通航分道內(nèi)的船舶的航行軌跡分布、B類結(jié)果為從瓊州海峽西峽口向東行駛于反向航道的船舶的航行軌跡分布、C類結(jié)果為從海安港到秀英港的船舶的航行軌跡分布、D類結(jié)果為從秀英港到海安港的船舶的航行軌跡分布、E類結(jié)果為瓊州海峽東峽口向西行駛進(jìn)入??诟鄣拇暗暮叫熊壽E分布.
3.1算法分析
為比較算法的優(yōu)劣,將基于軌跡結(jié)構(gòu)距離的DBSCAN算法與傳統(tǒng)的DBSCAN算法進(jìn)行對比,結(jié)果見表2.
表2算法對比結(jié)果
從表2中可以看出,基于軌跡結(jié)構(gòu)距離的DBSCAN算法在運(yùn)行時間方面劣于傳統(tǒng)的DBSCAN算法,但是在分類結(jié)果和準(zhǔn)確度方面皆優(yōu)于傳統(tǒng)的DBSCAN算法.這是因?yàn)椋夯谲壽E結(jié)構(gòu)距離的DBSCAN算法需要進(jìn)行軌跡的分割、角度的度量、歸一化等操作,增加了計算復(fù)雜度;該算法以軌跡特征為參考,從多方面計算軌跡相似度,易發(fā)現(xiàn)比較隱蔽的軌跡群,使其聚類效果優(yōu)于傳統(tǒng)的DBSCAN算法的聚類效果.
3.2聚類應(yīng)用
將上述所獲得的船舶軌跡聚類的結(jié)果應(yīng)用到船舶監(jiān)控、異常檢測上,能夠大幅度提高海上安全保障能力,防止海上交通事故的發(fā)生[15].
3.2.1速度監(jiān)控
速度監(jiān)控是利用監(jiān)控水域的AIS信息,對聚類結(jié)果中的船舶速度進(jìn)行統(tǒng)計,獲得船速分布圖.根據(jù)實(shí)際工作中的經(jīng)驗(yàn)和需要,確定行駛于該監(jiān)控水域的船舶速度監(jiān)控范圍.圖4是對從瓊州海峽東峽口航行至海口港的船舶速度統(tǒng)計.對于該監(jiān)控水域,本文以80%船舶運(yùn)營速度(9~14kn)為標(biāo)準(zhǔn).
圖5為監(jiān)控系統(tǒng)的速度報警,可以看出編號為A的船超速,說明該船航速不在監(jiān)控航速范圍內(nèi),予以報警.
3.2.2位置監(jiān)控
位置監(jiān)控主要是對航行于聚類結(jié)果區(qū)域的船舶進(jìn)行船位的實(shí)時監(jiān)控,如果船舶偏離監(jiān)控水域,本船和監(jiān)控系統(tǒng)應(yīng)給予報警和提示,提醒監(jiān)控人員和船舶駕駛員關(guān)注船舶動向.圖6a為本船的位置報警示意圖,圖6b為監(jiān)控系統(tǒng)的位置報警示意圖.
3.2.3航向監(jiān)控
航向監(jiān)控主要利用AIS數(shù)據(jù)對聚類結(jié)果中船舶航向進(jìn)行統(tǒng)計,獲得船舶的航向分布,以此作為監(jiān)控依據(jù).圖7a是對從瓊州海峽東峽口到??诟鄣木垲惤Y(jié)果中船舶轉(zhuǎn)向后的航向統(tǒng)計結(jié)果.圖7b和7c為本船和監(jiān)控系統(tǒng)的航向報警示意圖.
綜上所述,可以得到船舶監(jiān)控的實(shí)現(xiàn)流程圖(圖8),首先對進(jìn)入監(jiān)控水域的船舶進(jìn)行位置監(jiān)控(若偏離監(jiān)控水域則報警),然后進(jìn)行速度監(jiān)控(判斷速度是否超出規(guī)定范圍,如果超出則進(jìn)行速度報警),接著進(jìn)行航向的監(jiān)控直至船舶駛離監(jiān)控水域.
4結(jié)論
本文利用軌跡結(jié)構(gòu)距離作為相似性的度量標(biāo)準(zhǔn),對軌跡段間的相似性進(jìn)行評價,采用無監(jiān)督的DBSCAN算法將相似性接近的船舶軌跡歸為一類,實(shí)現(xiàn)了對船舶運(yùn)動模式的提取.以瓊州海峽為例,利用預(yù)處理過的部分瓊州海峽AIS數(shù)據(jù),將航行于該水域的船舶軌跡分為5類,分別為從瓊州海峽東峽口向西航行的船舶軌跡、從瓊州海峽西峽口向東航行的船舶軌跡、從海安港到秀英港的船舶軌跡、從秀英港到海安港的船舶軌跡以及從瓊州海峽東峽口向西航行進(jìn)入??诟鄣拇败壽E.從瓊州海峽東峽口向西航行的船舶軌跡位于(20°14′25″N,110°26′20″E)與(20°09′05″N,110°01′24″E)之間的通航分道內(nèi);從瓊州海峽西峽口向東航行的船舶軌跡分布于(20°13′N,110°26′20″E)與(20°06′45″N,110°01′24″E)之間的通航分道內(nèi);從瓊州海峽東峽口向西航行進(jìn)入??诟鄣拇败壽E,其轉(zhuǎn)向位置大約發(fā)生在以(20°10′16″N,110°14′08″E)為圓心,半徑為0.5nmile的水域范圍內(nèi).將聚類的結(jié)果與ECDIS模擬器相結(jié)合,從船舶位置、速度、航向等3個方面實(shí)現(xiàn)了船舶動態(tài)監(jiān)控的仿真.實(shí)驗(yàn)證明船舶運(yùn)動模式識別能夠有效地應(yīng)用于船舶動態(tài)監(jiān)控,進(jìn)而保障航行安全,增強(qiáng)海上安全保障能力.
參考文獻(xiàn):
[1]SHUHM,KATSU.TraininghiddenMarkovmodelstructurewithgeneticalgorithmforhumanmotionpatternclassification[C]//SCIICASEInternationalJointConference.Busan:IEEEPress,2006:618622.
[2]胡宏宇,王慶年,曲昭偉,等.運(yùn)動目標(biāo)空間模式識別與異常行為檢測[J].吉林大學(xué)學(xué)報,2011,41(6):15981602.
[3]聞佳,崔維.實(shí)時視頻中的車輛運(yùn)動軌跡的提取和聚類[J].計算機(jī)工程與應(yīng)用,2010,46(11):155157.
[4]RISTICB,SCALARL.StatisticalanalysisofmotionpatterninAISdata:anomalydetectionandmotionprediciton[C]//11thInternationalConferenceonInformaiton.Fusion,Cologne:IEEEPress,2008:17.
[5]ETIENNEL,DEVOGELET.Similarityanalysisofmobileobjectstrajectoriesfollowingthesameitinerary[J].IngenierieDesSystemesD’information,2009,14(5):85106.
[6]AARSETHERKG,TORGEIRM.EstimatingnavigationpatternsfromAIS[J].JournalofNavigaiton,2009,65(4):587607.
[7]GERBENKDV,MAARTENVS.Ananalysisofalignmentandintegralbasedkernelsformachinelearningfromvesseltrajectoris[J].ExpertSystemswithApplications,2014,41(2):75967607.
[8]ANDERSD,LARSN.Trajectoryclusteringforcoastalsurveillance[C]//10thInternationalConferenceonInformationFusion.Quebec:IEEEPress,2007:18.
[9]LAXHAMMARR,F(xiàn)ALKMANG,SVIESTINSE.AnomalydetectioninseatrafficacomparisionoftheGaussianmixturemodelandthekerneldensityesimator[C]//12thInternationalConferenceonInformaitonFusion.Seattle:IEEEPress,2009:756763.
[10]JOHNSONN,HOGGD.Learningthedistributionofobjecttrajectoriesforeventrecognition[J].ImageandVisionComputing,1996,14(8):609615.
[11]ATEVS,MASOUDO,PAPANIKOLOPOULOSN.Learningtrafficpatternsatintersectionsbyspectralclusteringofmotiontrajectories[C]//IEEEInternationalConferenceonIntelligentRobotsandSystems.Beijing:IEEEPress,2006:48514856.
[12]QUXB,MENGQ,LISY.ShipcollisionriskassessmentfortheSingaporestrait[J].AccidentAnalysisPrevention,2011,43(3):20302036.
[13]史國友,朱公志,賈傳熒,等.恒向線主題直接正反解的高精度算法[J].大連海事大學(xué)學(xué)報,2009,35(2):59.
一、3G用戶細(xì)分體系架構(gòu)
用戶細(xì)分是3G業(yè)務(wù)開發(fā)及市場營銷的基礎(chǔ),用戶細(xì)分能夠使差異化成為可能,使運(yùn)營商提供的3G產(chǎn)品和服務(wù)能夠更有針對性。3G用戶細(xì)分方法的選擇直接決定了相關(guān)用戶細(xì)分結(jié)果的準(zhǔn)確性及實(shí)用性。對于3G用戶細(xì)分的體系搭建的思路是: 采用3 個緯度進(jìn)行用戶的細(xì)分,首先按照用戶價值緯度進(jìn)行用戶細(xì)分,然后再結(jié)合消費(fèi)行為緯度和消費(fèi)心理緯度細(xì)分用戶群。在3G用戶細(xì)分的體系架構(gòu)中,3個緯度的用戶細(xì)分依據(jù)、方法及應(yīng)用價值如表1 所示。
二、客戶識別分類模型
(一)數(shù)據(jù)抽取
本案例數(shù)據(jù)來源于某電信運(yùn)營公司,該數(shù)據(jù)總量為26000條。每一條對應(yīng)一個客戶近六個月的統(tǒng)計信息。其中已知分類(2G、3G)的為18000條,未知分類8000 條。其中包括客戶年齡,月平均消費(fèi)額,月平均通話時長等屬性250 個(包括客戶類型)。本例利用26000條已知分類的數(shù)據(jù)進(jìn)行分類模型的建立,隨機(jī)抽取訓(xùn)練數(shù)據(jù)10000條,測試數(shù)據(jù)8000條。
(二)數(shù)據(jù)預(yù)處理
上述采集的數(shù)據(jù)有數(shù)據(jù)多、數(shù)據(jù)取值范圍廣和數(shù)據(jù)取值類型多樣的特點(diǎn),因此必須在建模前對數(shù)據(jù)進(jìn)行預(yù)處理,如采集的樣本數(shù)據(jù)存在一些屬性值缺省或空值,如果不做處理,將直接影響后續(xù)算法的挖掘效果,嚴(yán)重時甚至得到錯誤的結(jié)果。數(shù)據(jù)預(yù)處理包含數(shù)據(jù)清洗、屬性篩選、數(shù)據(jù)平衡、數(shù)據(jù)歸一化和離散化五個步驟。數(shù)據(jù)清洗分為類型轉(zhuǎn)換和缺失數(shù)據(jù)填補(bǔ)兩部分;屬性篩選分為人工篩選和通過相關(guān)系數(shù)分析實(shí)現(xiàn)屬性選擇兩部分;由于作為訓(xùn)練的18000條數(shù)據(jù)只有少數(shù)是3G用戶,這樣會導(dǎo)致模型輸出結(jié)果偏向判別為2G 客戶,因此必須通過數(shù)據(jù)平衡實(shí)現(xiàn)2、3G用戶數(shù)量達(dá)到1:1;為了提高BP 神經(jīng)網(wǎng)絡(luò)的性能,需要對數(shù)據(jù)進(jìn)行歸一化;對于決策樹算法,需要對數(shù)據(jù)進(jìn)行離散化,否則生產(chǎn)的決策樹將會過于茂盛,以至于無法分析。
三、客戶數(shù)據(jù)分類識別過程
本文分別采用BP 神經(jīng)網(wǎng)絡(luò)和決策樹進(jìn)行建模,實(shí)現(xiàn)對3G 客戶的分類識別。本案例運(yùn)用TipDM 數(shù)據(jù)挖掘在線建模平臺中的性分析進(jìn)行數(shù)據(jù)探索,再運(yùn)用BP 神經(jīng)網(wǎng)絡(luò)和C4.5 決策樹進(jìn)行客戶識別。(一)模型輸入。本案例中,模型數(shù)據(jù)涉及客戶年齡、月平均通話時長和月平均消費(fèi)額等240多個屬性(包含客戶類型),模型輸入需將客戶識別樣本屬性表導(dǎo)入建模平臺中即可。(二)仿真識別過程。建模仿真過程說明如下:1.登錄TipDM 平臺,在方案管理頁面中,新建方案或者打開一個已建方案;2.切換到數(shù)據(jù)管理頁面,上傳經(jīng)預(yù)處理后的專家樣本數(shù)據(jù)文件;3.選擇相關(guān)性分析功能,導(dǎo)入樣本數(shù)據(jù)進(jìn)行相關(guān)性分析;4.分別選擇BP 神經(jīng)網(wǎng)絡(luò)算法和C4.5 決策樹算法,進(jìn)行模型構(gòu)建;5.對比BP 神經(jīng)網(wǎng)絡(luò)和C4.5 決策樹的建模結(jié)果,并選擇最優(yōu)算法;6.用最優(yōu)法對測試樣本進(jìn)行3G 客戶識別。(三)仿真結(jié)果分析。1.基于BP 神經(jīng)網(wǎng)絡(luò)的模型構(gòu)建。由于神經(jīng)網(wǎng)絡(luò)算法輸出結(jié)果受到訓(xùn)練次數(shù)影響,并伴隨一定的隨機(jī)性,多次實(shí)驗(yàn)得到的分類正確率如下表所示。
四、總結(jié)與建議
決策樹與BP神經(jīng)網(wǎng)絡(luò)對于3G客戶的識別正確率都接近80%,說明本用例建立的分類模型對3G客戶的敏感度比較高,基本能識別出3G用戶,能達(dá)到預(yù)期目標(biāo)。但是只看3G客戶的識別正確率是不科學(xué)的,還要看2G 客戶的識別正確率和總體識別正確率。從總體正確率看,BP 神經(jīng)網(wǎng)絡(luò)的正確率仍然比決策樹高近10%,BP神經(jīng)網(wǎng)絡(luò)無論是總體性能還是對局部分類的敏感度都表現(xiàn)不錯,而決策樹分類模型性能還有待提高。
雖然本例的客戶識別未能達(dá)到百分百地準(zhǔn)確,但從另外一個角度看,一味追求正確率并沒有太多意義。因?yàn)楸緛磉\(yùn)營商對各個用戶的類別就已經(jīng)作了登記,反而,我們或許能從客戶的誤識別中獲得更多信息。
關(guān)鍵詞:環(huán)境激勵 模態(tài)參數(shù)識別
中圖分類號:N945.14
隨著我國大型土木工程結(jié)構(gòu)的大量建設(shè),結(jié)構(gòu)的監(jiān)測評估越來越受到重視,但由于其結(jié)構(gòu)的復(fù)雜性,傳統(tǒng)的模態(tài)測試方法實(shí)施難度大、成本高,已不能滿足工程需要?;诃h(huán)境激勵的模態(tài)參數(shù)識別方法具有不影響結(jié)構(gòu)正常使用、僅需結(jié)構(gòu)的輸出響應(yīng)便可識別結(jié)構(gòu)的模態(tài)參數(shù)等優(yōu)點(diǎn)越來越受到國內(nèi)外的關(guān)注。近年來
基于環(huán)境激勵的態(tài)參數(shù)識別方法又有了新的發(fā)展,本文參考國內(nèi)外最新研究成果對其進(jìn)行了詳細(xì)的綜述,并在此基礎(chǔ)上指出其存在的關(guān)鍵問題和研究發(fā)展方向。
1. 模態(tài)參數(shù)識別方法:
1.1 峰值法
峰值法是一種最簡單的模態(tài)參數(shù)識別方法。最初是基于結(jié)構(gòu)自振頻率響應(yīng)函數(shù)上會出現(xiàn)峰值,成為特征頻率的良好估計[2]。Bao和Ko[3], Lin和 Nikaeen[4],Luz[5]等率先利用功率譜峰值法提取模態(tài)參數(shù),用這種方法得到自振頻率并用半功率帶寬法計算阻尼,最后用各響應(yīng)點(diǎn)和參考點(diǎn)的互譜密度函數(shù)值和自譜密度函數(shù)值確定振型方向和振型分量比值得出振型。在此基礎(chǔ)上,進(jìn)而產(chǎn)生了頻域分解法、聯(lián)合時域分析法[6].近來應(yīng)用實(shí)踐中,王睿等[7]提出了一種基于峰值法及穩(wěn)定圖原理的鋼結(jié)構(gòu)塔模態(tài)參數(shù)識別方法,利用穩(wěn)定圖原理處理的一階段處理圖在三維坐標(biāo)中進(jìn)行呈現(xiàn),并進(jìn)行二次處理,得到了良好的效果。
1.2 自然激勵技術(shù)(NExT)
由美國SADIA國家實(shí)驗(yàn)室的James和Carne提出,用來獲取模態(tài)識別所需的自由響應(yīng)數(shù)據(jù)[8-9]韓建平等[10]基于Hilbert-Huang 變換和自然激勵技術(shù),提出了一種新的模態(tài)參數(shù)識別方法,首先通過經(jīng)驗(yàn)?zāi)B(tài)分解和Hilbert 變換提取信號的瞬時特性,進(jìn)而利用自然激勵技術(shù)和模態(tài)分析的基本理論識別結(jié)構(gòu)的模態(tài)頻率和模態(tài)阻尼比。李萬潤[11]基于傳遞函數(shù)提出了一種基于ARX(Auto Regressive model with exogenous input)模型建立偽傳遞函數(shù)(Pseudo-Transfer Function)的損傷定位方法,并結(jié)合自然激勵技術(shù)對其進(jìn)行了改進(jìn),可將該方法應(yīng)用于環(huán)境激勵下結(jié)構(gòu)的損傷識別。
1.3 時間序列法
時間序列法是一種利用參數(shù)模型對有序的隨機(jī)采樣數(shù)據(jù)進(jìn)行處理,從而進(jìn)行模態(tài)參數(shù)識別的方法。用到得參數(shù)模型有:AR模型、MA模型、ARMA模型和ARMAX模型 [12-15].各種模型參數(shù)估計的算法有最小二乘法、Levinson法、Burg法、先后估計法和長自回歸白噪法。1969年,Akaile[16]首次利用自回歸滑動均值模型進(jìn)行白噪聲激勵下的模態(tài)參數(shù)識別。
1.4 隨機(jī)減量法
隨機(jī)減量法[17-19]的步驟為:
(1)將響應(yīng)信號分成若干相等長度的段,并對其進(jìn)行疊加,得到自由衰減的振動信號。
(2)結(jié)合其他模態(tài)識別方法識別模態(tài)數(shù)據(jù)。Y.Jann N[20]等人闡述了隨機(jī)減量法的數(shù)學(xué)基礎(chǔ);Ibrahim把隨機(jī)減量法運(yùn)用到了多通道信號領(lǐng)域。此方法僅適用于白噪聲激勵的情況。
1.5 隨機(jī)子空間法
隨機(jī)子空間法是目前比較先進(jìn)的識別方法,但是處理數(shù)據(jù)時間長。近年來,同濟(jì)大學(xué)的常軍、張啟偉、孫利民[21,22,23]等人對其計算效率進(jìn)行了改進(jìn)。這種方法的步驟為:
(1)采集環(huán)境激勵下結(jié)構(gòu)的動力響應(yīng)數(shù)據(jù)。
(2)對動力響應(yīng)數(shù)據(jù)進(jìn)行預(yù)處理,并求得結(jié)構(gòu)的系統(tǒng)矩陣。
(3)根據(jù)根據(jù)結(jié)構(gòu)的系統(tǒng)矩陣提取結(jié)構(gòu)的模態(tài)參數(shù)(固有頻率、阻尼比、振型等)。
(4)對模態(tài)參數(shù)的識別結(jié)構(gòu)進(jìn)行分析,作出穩(wěn)定圖[24]。根據(jù)加權(quán)方法的不同有三種算法:UPC算法、CVA算法、PC算法,從計算結(jié)果看,PC算法的精度較高[25].
1.6 特征系統(tǒng)實(shí)現(xiàn)算法(ERA)
特征值實(shí)現(xiàn)算法通過構(gòu)建hankel矩陣求得系統(tǒng)的特征值和特征向量,從而得到模態(tài)參數(shù),且其主要難點(diǎn)在于準(zhǔn)確確定hankel矩陣。Pappa[26]等對其進(jìn)行了持續(xù)的研究。祁泉泉等[27]在此算法基礎(chǔ)上引入觀測馬科夫(Observer Markov)參數(shù),推導(dǎo)并提出了擴(kuò)展特征系統(tǒng)實(shí)現(xiàn)算法(EERA)。
1.7 時頻分析方法
時頻分析方法分為線性時頻分析方法和雙線性時頻分析方法。作為一種新的參數(shù)識別方法,越來越受到人們的關(guān)注。近年來其熱點(diǎn)主要包括:魏格納分布( WVD)、短時傅里葉變換(STFT)、時變ARMA參數(shù)化模型[28-31]、小波變換(WT)、Hiber-黃變換(HHT)。
2 存在的關(guān)鍵問題及研究發(fā)展方向
現(xiàn)有的基于環(huán)境激勵模態(tài)參數(shù)的識別方法雖然有了很大的發(fā)展,但是由于噪聲的干擾、非穩(wěn)態(tài)激勵的存在、結(jié)構(gòu)外部環(huán)境的變化,使其在實(shí)際工程中遇到了許多問題。其研究發(fā)展趨勢主要有:
(1)信號降噪處理目前仍為研究的熱點(diǎn)。
(2)研究具有自主產(chǎn)權(quán)的實(shí)驗(yàn)?zāi)B(tài)分析系統(tǒng)。
(3)對非穩(wěn)態(tài)環(huán)境激勵下的模態(tài)參數(shù)識別問題研究。
(4)溫度、風(fēng)力等環(huán)境因素影響是模態(tài)參數(shù)識別的一個重要問題。
(5)真實(shí)模態(tài)與虛假模態(tài)參數(shù)識別具有遠(yuǎn)大的發(fā)展前景。
參考文獻(xiàn):
[1] 任偉新. 環(huán)境振動系統(tǒng)識別方法的比較分析. 福州大學(xué)學(xué)報(自然科學(xué)版),2001,29(6):80-86.
[2] 王睿,劉曉平,張鵬. 一種基于峰值法及穩(wěn)定圖原理的鋼結(jié)構(gòu)塔模態(tài)參數(shù)識別方法[J].信息通信,2012,121(5):77-78.
[3] 韓建平,李達(dá)文. 基于 HILBERT-Huang 變換和自然激勵技術(shù)的模態(tài)參數(shù)識別[J]. 工程力學(xué),2010,27(8):54-59.
[4] 李萬潤. 基于模型修正與時序分析的結(jié)構(gòu)損傷識別方法研究[D].蘭州理工大學(xué) 2013.
[5] 趙永輝,鄒經(jīng)湘.利用ARMAX模型識別結(jié)構(gòu)模態(tài)參數(shù)[J].振動與沖擊.2000,19(1):34-36.
[6] 劉齊茂.用隨機(jī)減量技術(shù)及ITD法識別工作模態(tài)參數(shù)[J].廣西工學(xué)院學(xué)報.2002,13(04):23-26.
[7] 黃方林,何旭輝,陳政清等.隨機(jī)減量法在斜拉橋索模態(tài)參數(shù)識別中的應(yīng)用[J].機(jī)械強(qiáng)度.2002,24(03):331-334.
[8] 常軍,孫利民,張啟偉.基于兩階段穩(wěn)定圖的隨機(jī)子空間識別結(jié)構(gòu)模態(tài)參數(shù)[J].地震工程與工程振動,2008,28(3):47-51.
[9] 常軍.隨機(jī)子空間方法在橋梁模態(tài)參數(shù)識別中的應(yīng)用研究[D].博士學(xué)位論文.上海:同濟(jì)大學(xué),2006.
關(guān)鍵詞 可變樣本 BP網(wǎng)絡(luò) 模式識別
Abstract Mean shifts in production process could be detected quicker by the application of variable sampling rate (VSP)control charts。In this paper, a framework which using the integration of Variable sample sizes and sampling intervals(VSSI) and back-propagation(BP) networks for process controlling and non-normal patterns recognition was proposed, and the sampling rate groups and BP networks group model were designed.
Keywords: Variable sampling BP Networks patterns recognition
引言
統(tǒng)計過程控制(SPC)在生產(chǎn)過程中的應(yīng)用主要是為了維持特定質(zhì)量特性的穩(wěn)定性和可接受性,其中,休哈特控制圖作為SPC的重要工具之一,也是最常采用的手段??刂茍D呈現(xiàn)的狀態(tài)可以反映生產(chǎn)過程是否受控,當(dāng)出現(xiàn)非受控情形,需要對其異常模式進(jìn)行識別并進(jìn)行相應(yīng)的調(diào)整。在控制圖異常模式識別的研究中主要集中于人工神經(jīng)網(wǎng)絡(luò)(ANNs)D T Pham和E Oztemel[1]采用學(xué)習(xí)矢量量化(LVQ)網(wǎng)絡(luò)組建立了一個控制圖異常模式識別系統(tǒng),并討論了提高識別器精度方法;S K Gauri和S Chakraborty[2]采用經(jīng)由反向傳播算法訓(xùn)練的多層感知神經(jīng)網(wǎng)絡(luò)構(gòu)建了異常模式識別器,并對其進(jìn)行了評估。C S Cheng和C A Tzeng使用反向傳播網(wǎng)絡(luò)進(jìn)行了控制圖異常模式識別的研究[3]。本文中采用BP神經(jīng)網(wǎng)絡(luò)來進(jìn)行控制圖異常模式識別。
另一方面,傳統(tǒng)的休哈特控制圖采用固定樣本容量和抽樣區(qū)間的方式進(jìn)行樣本組的抽取。近些年來對可變樣本參數(shù)控制圖的研究表明可變樣本容量(VSS)與可變抽樣區(qū)間(VSI)的控制圖能夠更快地發(fā)現(xiàn)生產(chǎn)過程中存在的微小變化。A F B Costa[4]對可變樣本參數(shù)的控制圖進(jìn)行了深入研究,提出了可變警告限的方法并通過與CUSUM和EWMA的對比,證明了該方法可以獲得更高的靈敏度;Y C Lin與C Y Chou[5]采用Burr分布,針對非正態(tài)分布的情況下設(shè)計了可變樣本容量與區(qū)間(VSSI)的均值圖,并通過對比驗(yàn)證其具有更高的精確性和魯棒性。
本文結(jié)合VSSI的均值-極差控制圖,提出一種采用BP網(wǎng)絡(luò)進(jìn)行過程控制,以及控制圖異常模式識別的系統(tǒng)框架。
1 系統(tǒng)實(shí)現(xiàn)框架
系統(tǒng)的主要功能包括模式識別與樣本參數(shù)組控制兩大方面,在系統(tǒng)的應(yīng)用過程中,需要綜合考慮異常模式識別與樣本參數(shù)選擇和控制圖數(shù)據(jù)之間的相互關(guān)系。經(jīng)過對系統(tǒng)的分析,確定系統(tǒng)包括三個模塊,分別是:傳遞模塊、異常模式識別模塊、樣本參數(shù)反饋模塊。系統(tǒng)的總體框架如圖1所示:
圖1 系統(tǒng)總體框架圖
(1)傳遞模塊 該模塊的主要作用是接收生產(chǎn)過程中采集的質(zhì)量數(shù)據(jù),并初步判斷是否超出控制限,若超出控制限則將數(shù)據(jù)只傳遞至異常模式識別模塊,同時自行生成樣本參數(shù)調(diào)整信號,反之傳遞至異常模式識別模塊與樣本參數(shù)反饋模塊;此外,該模塊接受異常模式識別模塊反饋的模式識別結(jié)果,并反饋至生產(chǎn)過程決策端以供誤差識別與調(diào)整使用,同時接受樣本參數(shù)模塊的反饋結(jié)果,并傳遞是否調(diào)整樣本參數(shù)的信號至生產(chǎn)過程的信號采集端。該模塊即為系統(tǒng)的中轉(zhuǎn)站。
(2)異常模式識別模塊 該模塊的主要作用是根據(jù)傳遞模塊所傳送的生產(chǎn)過程數(shù)據(jù),通過內(nèi)置神經(jīng)網(wǎng)絡(luò),對其進(jìn)行模式識別,并將模式識別的結(jié)果反饋至傳遞模塊。
(3)樣本參數(shù)反饋模塊 該模塊的主要作用是根據(jù)經(jīng)由傳遞模塊轉(zhuǎn)達(dá)的過程數(shù)據(jù),通過當(dāng)前內(nèi)置控制圖參數(shù)進(jìn)行判斷是否需要更改控制圖參數(shù),將判斷結(jié)果以選擇信號的形式反饋至傳遞模塊。
系統(tǒng)工作的流程圖如圖2所示:
圖2 系統(tǒng)流程圖
為了實(shí)現(xiàn)基于可變樣本參數(shù)與神經(jīng)網(wǎng)絡(luò)的控制圖異常模式識別系統(tǒng),使其能夠滿足控制圖異常模式識別和控制圖參數(shù)可變的需求,系統(tǒng)需要解決兩個方面的問題, 分別為可變參數(shù)控制圖樣本參數(shù)的選取和異常模式識別模塊的設(shè)計,本文其后將詳細(xì)探討這兩個方面。
2 可變樣本參數(shù)控制圖的主要原理
可變樣本容量與抽樣區(qū)間控制圖是近些年來興起的應(yīng)用方向,與傳統(tǒng)的休哈特控制圖不 同的是,可變樣本容量與抽樣區(qū)間控制圖一般設(shè)計為具有兩組或以上取樣參數(shù)的模式,從而能根據(jù)當(dāng)前系統(tǒng)的過程數(shù)據(jù),靈活確定樣本參數(shù),從而提高效率。考慮到對于一般的過程控制,當(dāng)取樣模式大于兩種時,在取樣行為更改與實(shí)施過程中所耗費(fèi)的時間可能會大于所節(jié)省的時間,因此,本文采用兩組取樣參數(shù)s1(n1,h1)和s2(n2,h2),其中n和h分別代表樣本容量與抽樣區(qū)間。其中,s1為較小樣本容量和較大取樣區(qū)間,對應(yīng)于良好的過程情況,反之,s2為較大樣本容量和較小取樣區(qū)間,對應(yīng)于需要密切監(jiān)控的過程情況。假設(shè)過程均值為 ,標(biāo)準(zhǔn)差為 ,兩組模式的上下控制限分別表示為UCL1、LCL1和UCL2、LCL2,上下警告限分別表示為UWL1、LWL1和UWL2、LWL2。其計算公式如式(1)和式(2),其中k為控制限系數(shù),w為警告限系數(shù)。
(1)
(2)
通過定義樣本點(diǎn)可控概率p0,平均樣本容量n0,以及固定取樣區(qū)間h0,樣本容量n1和n2之間必須滿足方程(3),取樣區(qū)間h1和h2之間必須滿足方程(4):
(3)
(4)
通過采用控制限與警告限,VSSI控制圖分為三部分:中間區(qū)域、警告區(qū)域和活動區(qū)域。在其應(yīng)用于控制的過程中,當(dāng)樣本點(diǎn)位于中間區(qū)域時,則認(rèn)為過程受控,采用模式s1進(jìn)行下一組取樣;反之,當(dāng)樣本點(diǎn)位于警告區(qū)域時,認(rèn)為過程具有不受控的風(fēng)險,采用模式s2進(jìn)行下一組的取樣;當(dāng)樣本點(diǎn)超過控制限,即處于活動區(qū)域,則發(fā)出信號。
此外,本文結(jié)合系統(tǒng)特點(diǎn),對樣本參數(shù)的選擇作出了更改:當(dāng)異常模式識別模塊發(fā)現(xiàn)異常模式時,同時將異常信號經(jīng)由傳遞模塊傳送至樣本參數(shù)選擇模塊,在接下來的過程中,采用樣本參數(shù)組s2進(jìn)行取樣,即視作具有不受控風(fēng)險的情況對待。
3 異常模式識別模塊
BP神經(jīng)網(wǎng)絡(luò)是一種典型的指導(dǎo)學(xué)習(xí)型網(wǎng)絡(luò),經(jīng)常用于識別、預(yù)測和分類,其結(jié)構(gòu)包括輸入層、輸出層及中間的隱藏層,如圖1所示。BP網(wǎng)絡(luò)每層神經(jīng)元的數(shù)目通常根據(jù)問題復(fù)雜程度確定,同時過多的神經(jīng)元數(shù)目會導(dǎo)致訓(xùn)練時間過長,本文采用56-35-1和56-35-4結(jié)構(gòu)的三層結(jié)構(gòu)BP網(wǎng)絡(luò)。
圖3 BP網(wǎng)絡(luò)結(jié)構(gòu)圖
根據(jù)經(jīng)驗(yàn)總結(jié),控制圖中常見的異常模式包括:①一個點(diǎn)遠(yuǎn)離中心線超過3個標(biāo)準(zhǔn)差;②連續(xù)7點(diǎn)位于中心線一側(cè),即偏移模式;③連續(xù)6點(diǎn)上升或下降,即趨勢模式;④連續(xù)14點(diǎn)交替上下變化,即周期模式。這些異常模式反映在控制圖上,可以通過圖3[6]中6種波動模式進(jìn)行表達(dá)。
圖4 控制圖異常模式
識別器模塊由兩個子模塊組成,如圖2所示,其中子模塊1為一個56-35-4結(jié)構(gòu)的BP網(wǎng)絡(luò),其作用為接受控制圖數(shù)據(jù)輸入,將其分類為相應(yīng)的異常模式,隨后將其相應(yīng)的參數(shù)傳送至下一子模塊中相應(yīng)的BP網(wǎng)絡(luò)模塊。子模塊2中為四個56-35-1結(jié)構(gòu)的BP網(wǎng)絡(luò)B、C、D,其工作模式為接受網(wǎng)絡(luò)A發(fā)送的參數(shù)并進(jìn)行識別,以得出是否屬于異常的結(jié)論,B、C、D對應(yīng)的模式參數(shù)均為0或1,網(wǎng)絡(luò)A的輸出值對應(yīng)模式識別結(jié)構(gòu)如表1所示。
表1 BPN A輸出值與模式對應(yīng)表
模式 輸出
1 2 3 4
正常 1 0 0 0
偏移 0 1 0 0
趨勢 0 0 1 0
循環(huán) 0 0 0 1
圖5 異常模式識別器結(jié)構(gòu)圖
結(jié)語
本文研究了將可變樣本容量參數(shù)控制圖與BP神經(jīng)網(wǎng)絡(luò)異常模式識別器集成于一體的系統(tǒng)框架,該系統(tǒng)的主要思想是采用可變樣本參數(shù)的方式提高過程效率,同時結(jié)合由BP神經(jīng)網(wǎng)絡(luò)構(gòu)建的異常模式識別器對生產(chǎn)過程進(jìn)行誤差實(shí)時識別和診斷,并提高抽樣效率。該方法將可變樣本參數(shù)控制圖的優(yōu)點(diǎn)與神經(jīng)網(wǎng)絡(luò)模式識別的功能相結(jié)合,相對于單一的模式識別網(wǎng)絡(luò)具有功能優(yōu)勢。由于時間關(guān)系,未能開發(fā)原形系統(tǒng)來進(jìn)行實(shí)例驗(yàn)證。同時,希望在以后的工作中,可以繼續(xù)完善,使其能夠?qū)崿F(xiàn)包括誤差源等更多層次的功能,從而更大地提高工作效率。
參考文獻(xiàn)
[1] D T Pham, E Oztemel. Control chart pattern recognition using learning vector quantization networks [J]. International Journal of Production Research, Vol 32, Issue 3, 1994 , p 721 C 729.
[2] S K Gauri, S Chakraborty. Improved Recognition of Control Charts Patterns Using Artificial Neural Networks [J]. The International Journal of Advanced Manufacturing Technology, Vol 36, p11-12, 2008.
[3] C S Cheng, C A Tzeng. A Neural Network Approach for Detecting Shifts in the Process Mean and Variability [J]. Computer Industrial Engineering, Vol28, p51-61,1995.
[4] A F B Costa. Xbar Charts with Variable Sample Sizes and Sampling Intervals [J]. Report Series in Quality and Productivity, No 133, 1995.
【關(guān)鍵詞】近視眼 屈光,眼 角膜
中圖分類號:R779.63 文獻(xiàn)標(biāo)識碼:B 文章編號:1005-0515(2011)6-071-02
近年來,隨著現(xiàn)代眼科屈光手術(shù)的不斷發(fā)展,使越來越多的近視患者獲得了良好的視力。而透鏡焦度、角膜中央厚度、角膜曲率對合理選擇手術(shù)及設(shè)計手術(shù)方案非常重要,并在很大程度上直接關(guān)系到屈光手術(shù)的安全性和矯正的可預(yù)測性。因此,我們對840例準(zhǔn)分子激光手術(shù)患者的術(shù)前檢查結(jié)果進(jìn)行了回顧性分析,探討透鏡焦度、性別與角膜厚度、角膜曲率的關(guān)系。
1 資料與方法
1.1 對象選擇 本組840例(1670只眼)均為2007年9月~2009年4月來我院眼科接受準(zhǔn)分子激光屈光手術(shù)的近視患者。所有病例無眼部不適癥狀,眼科常規(guī)檢查無異常,排除散光≥2.00 D。年齡18~45歲,平均(23.35±4.56)歲。其中男性480例(954只眼),平均(22.4±4.26)歲,女性360例(716只眼),平均(26.15±5.89)歲。所有病例均遵從等效球鏡原則(等值球鏡=球鏡度數(shù)+1/2散光度數(shù)),根據(jù)透鏡焦度將1670只眼分為3組,低度近視組(-6.00D),680只眼。根據(jù)性別分為2組,男性組480例(954只眼),女性組360例 (716只眼)。
1.2 檢查方法
1.2.1 驗(yàn)光 對所有病例進(jìn)行復(fù)方托品酰胺充分散瞳使睫狀肌麻痹后用TOPCON RM-8000電腦驗(yàn)光,然后用槍影鏡檢影驗(yàn)光,結(jié)合瞳孔恢復(fù)后主覺驗(yàn)光,確定近視透鏡焦度,透鏡焦度以最佳視力最低度數(shù)為準(zhǔn),排除散光≥2.00 D,并計算等值球鏡度數(shù)。
1.2.2角膜地形圖檢查 采用ORBSCANⅡ型角膜地形圖儀進(jìn)行檢查,分別記錄角膜水平曲率K1值和垂直曲率K2值。
1.2.3 角膜中央厚度測量 用超聲角膜測厚儀(DGH-500)測量角膜中央厚度每眼3次,取最小值。
1.3 統(tǒng)計學(xué)處理 運(yùn)用SAS 8.1統(tǒng)計軟件分別對測量數(shù)據(jù)進(jìn)行方差分析,P
2 結(jié)果
2.1 透鏡焦度 輕、中、高度近視的角膜厚度分別為(541.33±36.23)、(536.34±33.36)、(535.80±34.13)μm,統(tǒng)計學(xué)處理有顯著性差異,中、高度之間無顯著性差異。輕度近視的角膜比中、高度角膜厚。三組角膜水平曲率比較無顯著性差別,三組的垂直曲率分別為(43.71±1.46)、(43.95±1.60)、(44.39±1.63)D,三組比較有顯著性差別(P=0.000 1),說明隨著近視度數(shù)的增高,角膜垂直方向有變陡的趨勢。見表1。
表1 輕、中、高度近視各組間角膜中央厚度、角膜曲率比較
2.2 性別 男性角膜厚度、角膜水平曲率、垂直曲率954只眼分別為(537.86±38.23) μm、(42.71±1.51)、(43.83±1.69)D,女性為(533.07±38.67) μm、(43.91±14.20)、(44.51±1.50)D,三者比較有顯著性差異(P
3 討論
透鏡焦度與角膜中央厚度的關(guān)系存在一定的爭議。有學(xué)者認(rèn)為角膜厚度與近視透鏡焦度之間無明顯相關(guān)性[1~3]。范艷華等[4]認(rèn)為角膜中央厚度與透鏡焦度間呈正相關(guān),角膜厚度每增加95μm透鏡焦度上升1D。倪焰等[5]認(rèn)為低度近視的角膜厚度最高,與其他2組間均有統(tǒng)計學(xué)差異,而中、高度之間的角膜厚度無統(tǒng)計學(xué)差異,與本研究相似。本研究中低度近視與中、高度近視的角膜厚度有顯著性差異(P
角膜曲率對近視透鏡焦度的影響,國內(nèi)進(jìn)行了許多研究,結(jié)論尚有爭議[6~8],本組顯示3組間角膜水平曲率無統(tǒng)計學(xué)差異,但垂直曲率有顯著性差異(P=0.0001),說明隨近視度數(shù)的增高角膜垂直方向變陡。提示近視除眼軸增長外同時也受角膜曲率改變的影響。
性別與角膜曲率、角膜厚度的關(guān)系,本研究中男性角膜厚度為(537.86±38.23) μm,女性角膜厚度為(533.07士38.67) μm,統(tǒng)計學(xué)分析顯示性別之間的角膜厚度差別有明顯的統(tǒng)計學(xué)意義,男性角膜厚度大于女性。也有學(xué)者認(rèn)為角膜厚度與性別無關(guān)系[9]。本研究還顯示,男性角膜曲率和女性角膜曲率比較,有明顯的統(tǒng)計學(xué)意義(P
以上問題之所以存在爭議,可能與所研究的病例構(gòu)成樣本大小及使用的測量儀器不同有關(guān),這些問題還需要進(jìn)一步研究。而透鏡焦度、角膜厚度及角膜曲率是準(zhǔn)分子激光屈光手術(shù)前必不可少的檢查,在眼的屈光系統(tǒng)中,角膜曲率對眼球屈光狀態(tài)影響很大,它的整體屈光力大約為+43.00D,占眼球屈光系統(tǒng)的3/4,角膜曲率的輕微改變都會對屈光狀態(tài)產(chǎn)生影響,角膜厚度個體差異較大,對手術(shù)方式的選擇有重要的指導(dǎo)意義。因此,在角膜屈光手術(shù)前,精確地分析透鏡焦度、角膜厚度及角膜曲率能使我們在不同性別、不同透鏡焦度的手術(shù)方式的選擇、手術(shù)計劃的設(shè)計上更趨安全。
參考文獻(xiàn)
[1] 熊潔,鄧應(yīng)平.影響近視眼患者近視屈光度的相關(guān)因素分析 [J].眼科,2006.15(5):321―323.
[2] 倪海龍,王勤美,許琛?。龋甇rbscan測量近視眼角膜厚度 [J].眼視光學(xué)雜志,2001.3(3):137―139.
[3] 吳苗琴,徐志能.洪朝陽.等.LASIK術(shù)眼角膜厚度與眼壓及屈光度相關(guān)性研究[J].眼外傷職業(yè)眼病雜志,2005,27(10):744 746.
[4] 范艷華,彭清華,曾自明.等.近視跟角膜中央厚度相關(guān)因素分析[J].中國中醫(yī)眼科雜志.2006,16(2):81―83.
[5] 倪焰.孫建寧,魏春惠,等.近視眼屈光、角膜厚度與眼壓三者間的相關(guān)分析[J].眼科新進(jìn)展.2004,24(4):289―290.
[6] 杜連娟,孟樣毓.陳明,等.近視眼的眼軸與角膜屈光力相關(guān)研究[J].實(shí)用眼科雜志,1998,16(6):361―362.
[7] 張悅,張國輝。廖世煌.等.近視相關(guān)的多因素分析[J].眼科研究.1997,15(1):54―56.
[8] 高昌衛(wèi),賀景波,孫紅玲,等.4227只近視眼的角膜厚度測量及分析[J].臨床眼科雜志,2003,1l(4):353―354.
[9] 韋斌,具爾提,付玲玲,等.影響近視跟角膜中央厚度的多因素分析[J].國際眼科雜志,2006.6(4):818-820.
關(guān)鍵詞:模式識別;本科教學(xué);教學(xué)實(shí)踐;教學(xué)改革
隨著電子信息技術(shù)的迅速發(fā)展和信息處理自動化需求的不斷擴(kuò)大,模式識別方法和技術(shù)在信息處理領(lǐng)域中的重要性越來越受到重視。在吸引了眾多研究者投身到模式識別研究領(lǐng)域的同時,模式識別的教學(xué)也從研究生教學(xué)逐漸延伸到了本科教學(xué)。模式識別作為計算機(jī)、電子信息技術(shù)等專業(yè)的專業(yè)基礎(chǔ)課程,已經(jīng)在越來越多的高等院校開設(shè)。本科模式識別課程主要討論以統(tǒng)計學(xué)為基礎(chǔ)的模式識別理論和方法,內(nèi)容包括:貝葉斯決策理論以及參數(shù)估計方法、以誤差函數(shù)最小化為原則的線性和非線性判別、近鄰規(guī)則、特征提取和選擇、聚類分析、神經(jīng)網(wǎng)絡(luò)、支撐矢量機(jī)、隨機(jī)方法、非度量方法、獨(dú)立于算法的機(jī)器學(xué)習(xí)等內(nèi)容[1]。由于模式識別研究領(lǐng)域的廣泛性,模式識別本科教學(xué)的內(nèi)容和側(cè)重點(diǎn)的安排目前尚處于探索階段。模式識別領(lǐng)域的發(fā)展日新月異,這就要求教師在授業(yè)解惑的同時能夠與時俱進(jìn)地介紹該領(lǐng)域的發(fā)展前沿,從而培養(yǎng)學(xué)生主動探索知識的興趣。
本文將結(jié)合本科模式識別教學(xué)的實(shí)踐,分析該課程在內(nèi)容設(shè)置方面面臨的問題并給出相應(yīng)的解決問題的建議;結(jié)合模式識別課程的特點(diǎn),提出了以應(yīng)用實(shí)例為先導(dǎo)的教學(xué)方法,以提高學(xué)生的學(xué)習(xí)興趣;針對不同類型的學(xué)生,提出了如何培養(yǎng)學(xué)生實(shí)踐能力和科研興趣的方法。
1模式識別教學(xué)內(nèi)容的層次劃分和講授方法
模式識別是一門理論與實(shí)踐緊密結(jié)合的學(xué)科,其理論基礎(chǔ)涉及高等數(shù)學(xué)、線性代數(shù)、數(shù)理統(tǒng)計、矩陣論、隨機(jī)過程、工程優(yōu)化方法、小樣本統(tǒng)計學(xué)習(xí)理論、模糊數(shù)學(xué)等學(xué)科[2]。然而除了高等數(shù)學(xué)、線性代數(shù)和數(shù)理統(tǒng)計,其他課程都是研究生階段才會開設(shè)的數(shù)學(xué)基礎(chǔ)課。這就使得本科的模式識別教學(xué)面臨著尷尬的局面:既不能花過多的時間講數(shù)學(xué)基礎(chǔ)知識,又要把以這些數(shù)學(xué)知識為基礎(chǔ)的內(nèi)容講清楚。面對這一難題,我們在教學(xué)實(shí)踐中總結(jié)出了一套辦法,具體做法是將教學(xué)內(nèi)容劃分為基礎(chǔ)型、前沿型兩類;并采用弱化公式推導(dǎo),強(qiáng)調(diào)數(shù)學(xué)表達(dá)式物理含義的方法進(jìn)行講授。
基礎(chǔ)型教學(xué)指的是已經(jīng)發(fā)展完善的模式識別原理和方法?;A(chǔ)型內(nèi)容包括:貝葉斯決策理論、概率密度函數(shù)估計、線性判別、近鄰規(guī)則、獨(dú)立于算法的機(jī)器學(xué)習(xí)等內(nèi)容。貝葉斯決策理論和概率密度函數(shù)估計是以數(shù)理統(tǒng)計為基礎(chǔ)的[3],這一部分也是模式識別的重點(diǎn)內(nèi)容。線性判別是以高等數(shù)學(xué)和線性代數(shù)為基礎(chǔ),同時涉及工程優(yōu)化方法課程的部分內(nèi)容。在這部分內(nèi)容中,公式推導(dǎo)占據(jù)了相當(dāng)大的篇幅,而且推導(dǎo)過程是學(xué)生可以理解和掌握的。對于基礎(chǔ)型的內(nèi)容,可以采取理論推導(dǎo)和實(shí)際例子相結(jié)合的講授方式。在公式推導(dǎo)的過程中,尤其要強(qiáng)調(diào)公式的物理含義,同時給出幾個有趣的例子,在增強(qiáng)記憶加深理解的同時提高學(xué)生的學(xué)習(xí)興趣。
前沿型教學(xué)指的是正在發(fā)展中的模式識別原理和方法。前沿型內(nèi)容包括:特征提取和選擇、聚類分析、神經(jīng)網(wǎng)絡(luò)、支撐矢量機(jī)、隨機(jī)方法等內(nèi)容。這部分內(nèi)容或者是數(shù)學(xué)基礎(chǔ)超出了本科生的能力范圍,或者處于發(fā)展前沿,很多內(nèi)容正處于探討階段。對于前沿型的內(nèi)容,可以忽略公式推導(dǎo)過程,直接講授推導(dǎo)的結(jié)論以及結(jié)論的物理含義,同樣結(jié)合實(shí)際例子加深學(xué)生的理解。對于發(fā)展中的模式識別方法可以適當(dāng)介紹該領(lǐng)域的發(fā)展前沿,在開拓視野的同時激發(fā)學(xué)生的科研興趣,引導(dǎo)部分學(xué)生從事感興趣的科學(xué)領(lǐng)域的研究。
2實(shí)例先導(dǎo)的教學(xué)方法
模式識別方法是為了解決信息處理中面臨的識別問題而提出的。在講授方法之前,首先要明確將要介紹的模式識別方法的應(yīng)用背景和使用范圍,而不是像我們通常做的那樣,先介紹方法的理論基礎(chǔ)和流程,最后再給出一個例子,或者通過課后練習(xí)和作業(yè)的形式讓學(xué)生掌握課程介紹的理論和方法的應(yīng)用。針對本科模式識別課程的特點(diǎn),我們在教學(xué)實(shí)踐中摸索出了一套以實(shí)例為先導(dǎo)的教學(xué)方法,并與上機(jī)實(shí)驗(yàn)和課程設(shè)計相結(jié)合,大大提高了學(xué)生的學(xué)習(xí)興趣和動手能力,取得了良好的教學(xué)效果。
實(shí)例先導(dǎo)的教學(xué)方法是在介紹每一章或者相關(guān)的幾章內(nèi)容之前首先用一個實(shí)際的例子引出要學(xué)習(xí)的內(nèi)容,在相關(guān)內(nèi)容的學(xué)習(xí)結(jié)束之后給出解決實(shí)例問題的模式識別方法。例如:在講授貝葉斯決策理論之前,給出根據(jù)長度和光澤度等數(shù)值特征識別鮭魚和鱸魚的例子[4];在講授決策樹之前,給出根據(jù)顏色,形狀、尺寸等非度量特征識別水果的例子等等。通過學(xué)習(xí),找到了解決這類問題的一般方法,同時學(xué)生也通過實(shí)例記住并理解了該方法的適用范圍。又例如在講授特征的選擇與提取這一章時,先不講特征空間的映射和變換,而是從幾個實(shí)例出發(fā),說明并不是特征越多越好,而是要選擇合適的特征向量;特征的組合變換可以使復(fù)雜的分類問題轉(zhuǎn)化為簡單的問題等。從而讓學(xué)生更好地理解特征選擇和提取的目的和重要性。
在接觸到實(shí)際的模式識別問題時,會引發(fā)學(xué)生的思考。在授課過程中,教師可以針對具體問題組織學(xué)生進(jìn)行討論,看是否能夠利用已學(xué)過的模式識別方法解決該問題。若可以解決,則引導(dǎo)學(xué)生分析用已學(xué)方法解決該問題時存在的不足,從而引出下面將要介紹的新方法。這樣,在介紹新方法的同時,學(xué)生會很自然地將新方法與舊的方法進(jìn)行比較,分析各種方法的優(yōu)劣,有利于學(xué)生對教學(xué)內(nèi)容的深入理解和掌握。這種方法在講授解決同一類模式識別問題的不同方法時是適用的。如在講授貝葉斯決策時,可以通過對比的方式介紹幾種決策規(guī)則的特點(diǎn),又如在講授線性判別方法中各種形式的感知器算法時,也可以對比學(xué)習(xí)各種算法的優(yōu)劣。若該模式識別問題不能用已學(xué)的方法解決,則引導(dǎo)學(xué)生分析該模式識別問題的特點(diǎn),思考為何必須引入新的模式識別方法來解決該問題,學(xué)生是否能夠提出自己的解決方案。在分析和思考之后,教師再將解決該問題的思路引入到下面將要介紹的新方法上。這種方法在講授解決不同類型的模式識別問題時是適用的。如在講授非度量模式識別方法時,面對非度量語義屬性的模式識別問題是前面介紹的方法無法解決的,要引入非度量模式識別方法加以解決。
因此我們建議在教材的編寫上可以嘗試采用實(shí)例先導(dǎo)的方法。首先在引言部分給出一個實(shí)際例子,然后在介紹方法的部分結(jié)合理論分析給出解決實(shí)例問題的方法。這種方法有利于提高學(xué)生的學(xué)習(xí)興趣,增強(qiáng)記憶,加深理解。
3實(shí)踐能力和科研興趣的培養(yǎng)
模式識別是一門理論和實(shí)踐緊密結(jié)合的科學(xué),該學(xué)科的發(fā)展日新月異,在計算機(jī)和信息處理領(lǐng)域的地位越來越重要。因此,在模式識別課程的教學(xué)過程中要注重學(xué)生實(shí)踐能力和科研興趣的培養(yǎng)。在教學(xué)實(shí)踐中,我們采用了上機(jī)實(shí)驗(yàn)和科學(xué)報告相結(jié)合的教學(xué)方式。
掌握各種模式識別方法的原理和流程是本科模式識別教學(xué)的第一個階段。在此基礎(chǔ)上,我們要求學(xué)生在計算機(jī)上實(shí)現(xiàn)模式識別方法并用于解決實(shí)際的模式識別問題。在上機(jī)實(shí)現(xiàn)的過程中,學(xué)生不僅需要掌握模式識別問題在計算機(jī)中的表示方法和識別結(jié)果的展示形式,尤其重要的是學(xué)生需要對模式識別方法的每一個細(xì)節(jié)都要深入理解和掌握才能將算法實(shí)現(xiàn)。在上機(jī)教學(xué)中,我們采用了Matlab編程環(huán)境實(shí)現(xiàn)課程中介紹的模式識別方法。Matlab的編程語言簡單高效,而且提供了功能強(qiáng)大的圖形展示功能[5]。例如在貝葉斯決策和線性分類器的上機(jī)實(shí)驗(yàn)中,學(xué)生可以利用畫圖函數(shù)用不同的顏色和符合標(biāo)記不同類別的樣本,可以輕松地畫出決策面,這種可視化的分類結(jié)果展示形式不僅提高了學(xué)生的學(xué)習(xí)興趣,而且加深了學(xué)生對模式識別方法及其特點(diǎn)的理解。
在學(xué)生成績考核中,除了筆試成績我們還增設(shè)了上機(jī)作業(yè)成績和科學(xué)報告成績兩個部分。上機(jī)作業(yè)的內(nèi)容是要求學(xué)生從若干個上機(jī)題目中選擇有興趣的實(shí)現(xiàn)一個簡單的模式識別系統(tǒng)。例如設(shè)計實(shí)現(xiàn)貝葉斯分類器、線性分類器、神經(jīng)網(wǎng)絡(luò)分類器、決策樹等。科學(xué)報告可以有兩種形式,要求學(xué)生或者在模式識別領(lǐng)域的主流英文期刊上選擇感興趣的英文文獻(xiàn),將其翻譯為中文;或者就模式識別領(lǐng)域的一個感興趣的話題談?wù)勛约旱目捶ê椭鲝?。通過上機(jī)作業(yè)和科學(xué)報告的形式,學(xué)生的動手能力得到了良好的鍛煉。不僅提高了學(xué)生的學(xué)習(xí)熱情,而且引導(dǎo)學(xué)生積極思考,不少同學(xué)在科學(xué)報告中提出了自己的學(xué)術(shù)看法和主張,有些內(nèi)容頗具獨(dú)到的見解。
在學(xué)生成績考核中,除了筆試成績我們還增設(shè)了上機(jī)作業(yè)成績和科學(xué)報告成績兩個部分。上機(jī)作業(yè)的內(nèi)容是要求學(xué)生從若干個上機(jī)題目中選擇有興趣的實(shí)現(xiàn)一個簡單的模式識別系統(tǒng)。例如設(shè)計實(shí)現(xiàn)貝葉斯分類器、線性分類器、神經(jīng)網(wǎng)絡(luò)分類器、決策樹等。科學(xué)報告可以有兩種形式,要求學(xué)生或者在模式識別領(lǐng)域的主流英文期刊上選擇感興趣的英文文獻(xiàn),將其翻譯為中文;或者就模式識別領(lǐng)域的一個感興趣的話題談?wù)勛约旱目捶ê椭鲝?。通過上機(jī)作業(yè)和科學(xué)報告的形式,學(xué)生的動手能力得到了良好的鍛煉。不僅提高了學(xué)生的學(xué)習(xí)熱情,而且引導(dǎo)學(xué)生積極思考,不少同學(xué)在科學(xué)報告中提出了自己的學(xué)術(shù)看法和主張,有些內(nèi)容頗獨(dú)到的見解。
4結(jié)語
本科模式識別教學(xué)由于學(xué)生的數(shù)學(xué)基礎(chǔ)有限而面臨著兩難的境地。既要把原理和方法講清楚,又不能過多的涉及復(fù)雜的數(shù)學(xué)推導(dǎo),這給教學(xué)帶來很大困難。在教學(xué)實(shí)踐中,我們把教學(xué)內(nèi)容劃分為基礎(chǔ)型、前沿型兩類,并提出了弱化公式推導(dǎo),強(qiáng)調(diào)公式的物理含義,以及結(jié)合實(shí)例增強(qiáng)記憶的教學(xué)方法。為了提高學(xué)生的學(xué)習(xí)興趣,加深理解,我們提出了實(shí)例先導(dǎo)的教學(xué)方法。用實(shí)際例子引導(dǎo)學(xué)生思考,加深學(xué)生對模式識別方法應(yīng)用背景和適用范圍的理解。模式識別是實(shí)踐性很強(qiáng)的科學(xué),并且該學(xué)科的發(fā)展十分迅速。在教學(xué)實(shí)踐中,我們十分重視學(xué)生動手能力和科研興趣的培養(yǎng)。通過上機(jī)作業(yè)和科學(xué)報告的形式引導(dǎo)學(xué)生積極動手,積極思考。
參考文獻(xiàn):
[1] 邊肇祺,張學(xué)工. 模式識別[M]. 2版. 北京:清華大學(xué)出版社. ,2002:9-303.
[2] 顧波. 模式識別本科教學(xué)方法淺談[J]. 中國科教創(chuàng)新導(dǎo)刊.,2010(4):68.
[3] Andrew R. Webb. 統(tǒng)計模式識別[M]. 2版. 王萍,等,譯. 北京:電子工業(yè)出版社,2004:1-10.
[4] Richard O. Duda,Peter E. Hart,David G. Stork. 模式分類[M]. 2版. 李宏東,姚天翔,等,譯. 北京:機(jī)械工業(yè)出版社. ,2003.
[5] 楊淑瑩. 模式識別與智能計算:Matlab技術(shù)實(shí)現(xiàn)[M]. 北京:電子工業(yè)出版社,2008:1-300.
Teaching Practices on Undergraduate Patten Recognition Course andCurriculum Reforming
QI Yu-tao1,2, LIU Fang 1,2, JIAO Li-cheng 2
(1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China; 2. Institute of Intelligent Information Processing, Xidian University, Xi’an 710071, China)
摘 要:為實(shí)現(xiàn)對巴布劑涂布過程中均勻度的檢測,提出一種基于模糊模式識別的檢測方法。根據(jù)采集圖像像素點(diǎn)之間的空間和時間相關(guān)性及其特征界限的模糊性,引入模糊集理論,運(yùn)用模糊算法對像素點(diǎn)的灰度值進(jìn)行識別分類。檢測系統(tǒng)采用基于CycloneⅡ系列的FPGA技術(shù),運(yùn)用Verilog HDL硬件語言對系統(tǒng)完成建模與實(shí)現(xiàn),并且通過了仿真和驗(yàn)證。通過在線測試,對視頻數(shù)據(jù)流進(jìn)行分析、處理和識別,實(shí)現(xiàn)對涂布過程中巴布劑均勻度的檢測,根據(jù)統(tǒng)計結(jié)果,正確率達(dá)到95%。檢測結(jié)果證明了模糊模式識別算法的可行性和檢測系統(tǒng)的可靠性。
關(guān)鍵詞:模糊集理論;模式識別;巴布劑;均勻度檢測;FPGA技術(shù)
中圖分類號: TP274.3; TP391.4 文獻(xiàn)標(biāo)志碼:A
Abstract: To detect cataplasms uniformity, a method based on fuzzy pattern recognition was proposed. According to the spatial and temporal correlation of pixels and the fuzziness of character boundary, the fuzzy theory was introduced and the fuzzy algorithm was used to recognize and classify the pixels value. The CycloneⅡ Field-Programmable Gate Array (FPGA) of Altera was chosen, and the modeling and realization were performed by making use of Verilog HDL. The detection system passed the simulation and verification. In the on-line detection system, after analyzing, processing and recognizing the data of digital video, cataplasms uniformity detection was completed. According to the statistic results, the accuracy of fuzzy pattern recognition in digital image signals is up to 95%. After experiments and online detection, the feasibility of fuzzy pattern recognition and the reliability of this quality detection system are verified.
Key words: fuzzy set theory; pattern recognition; cataplasm巴布劑的英文是這個嗎?我在網(wǎng)上查的是別的詞,請您明確,并按照規(guī)范的詞來表示。; uniformity detection; technology of Field-Programmable Gate Array (FPGA)
0 引言
近年來,經(jīng)皮給藥系統(tǒng)(Transdermal Drug Delivery System, TDDS)以其獨(dú)特而有效的疾病治療方式,深受國內(nèi)外醫(yī)藥學(xué)研究機(jī)構(gòu)和制藥企業(yè)的重視,鑒于其在國內(nèi)外的廣闊市場需求和應(yīng)用前景,將巴布劑的制藥成型工序推向自動化、形成產(chǎn)業(yè)智能化的趨勢已勢不可擋[1]。
目前,巴布劑成品質(zhì)量檢測大多采用人工鑒定的方法,鑒定成品是否合格是從視覺上來看是否有氣泡,亮度、顏色是否均勻,這種對均勻度評估分析帶有一定的主觀性,難以形成規(guī)格化標(biāo)準(zhǔn),而且不能實(shí)時地監(jiān)視涂布過程中均勻度的變化。本文設(shè)計采用數(shù)字圖像處理的方法將目標(biāo)問題轉(zhuǎn)化為信號處理問題,根據(jù)圖像像素點(diǎn)之間的空間和時間相關(guān)性及其特征界限的模糊性,引入模糊集理論,提出一種基于模糊模式識別的巴布劑均勻度檢測方法,實(shí)現(xiàn)對巴布劑均勻度的實(shí)時檢測,該方法還可用于對本系統(tǒng)其他指標(biāo)的檢測,有利于實(shí)現(xiàn)巴布劑成型工序的自動化。
1 模糊模式識別原理
模糊集理論是研究和處理現(xiàn)實(shí)世界中客觀存在的模糊現(xiàn)象的有效工具之一。在模式識別中引入模糊集理論[2],用模糊技術(shù)來設(shè)計識別控制系統(tǒng),可以更廣泛、更深入地模擬人的思維過程,提高系統(tǒng)的實(shí)用性和可靠性。
模糊模式識別問題可分為兩大類型:1)待識別的對象是明確的元素,而模式庫(所有已知標(biāo)準(zhǔn)模式的全體)是模糊的,可采用隸屬原則進(jìn)行分類,稱為直接法;2)待識別的對象是模糊的,模式庫也是模糊的,可使用擇近原則進(jìn)行分類,稱為間接法[3-4]。
本檢測系統(tǒng)通過采集巴布劑圖像進(jìn)行分析、處理和識別判斷,實(shí)現(xiàn)對巴布劑均勻度的檢測,所以輸入待識別對象(數(shù)字圖像的640×480個像素點(diǎn))是特定具體的,而識別庫(符合標(biāo)準(zhǔn),幾乎符合標(biāo)準(zhǔn)和不符合標(biāo)準(zhǔn)三個模式)是模糊的,所以采用模糊模式識別的直接方法。
模糊模式識別直接方法的基本原理是:設(shè)U為待識別對象所構(gòu)成的集合,U中每一個待識別對象u有m個特性指標(biāo)u1,u2,…,um,構(gòu)成特征向量u=(u1,u2,…,um),設(shè)待識別對象集合U可分成P個類別,且每一類別均為U上的一個模糊集,記為A1,A2,…,Ap,則稱它們?yōu)槟:J?。給定一個對象ui∈U,求出ui對P個模式的相應(yīng)的隸屬度A1(ui),A2(ui),…,Ap(up),然后按照某種隸屬原則(最大隸屬度原則、最大隸屬原則、閾值原則)對識別對象ui進(jìn)行判斷,指出它應(yīng)歸屬哪一類別。
2 模糊模式識別模塊設(shè)計
系統(tǒng)采用直接方法對每一個像素點(diǎn)進(jìn)行模式識別,隸屬原則選擇了最大隸屬原則,具體的步驟如下。
2.1 抽取特性指標(biāo)
巴布劑成品均勻和不均勻的圖像及其灰度直方圖如圖1所示。
灰度直方圖是灰度值的函數(shù),它描述了圖像中具有該灰度值的像素的個數(shù),其橫坐標(biāo)表示像素的灰度級別,縱坐標(biāo)表示的是該灰度出現(xiàn)的像素的個數(shù)[5]。根據(jù)圖1分析可知,合格圖像的灰度值比較集中,灰度值在130~170,而不合格的圖像,由于存在氣泡或者藥劑噴涂不均勻帶來的顏色深淺不同,灰度值比較分散,灰度值在50~200。
該系統(tǒng)選取亮度信號Y作為識別對象的特性指標(biāo)。由于經(jīng)解碼后的數(shù)字視頻數(shù)據(jù)符合ITU-R BT.601標(biāo)準(zhǔn)[6],其無量綱和數(shù)量級的差別無需再進(jìn)行規(guī)格化處理。
2.2 設(shè)定模糊模式類別并構(gòu)造隸屬函數(shù)
隸屬函數(shù)是刻畫模糊集合最基本的概念,模糊集合是人腦對客觀事物的主觀反映,而人的心理進(jìn)程是隸屬度形成的基本過程,故模糊集合的隸屬度函數(shù)表達(dá)形式不是唯一的,因此很難用統(tǒng)一的方法來構(gòu)造隸屬函數(shù),只能針對具體問題及其特點(diǎn),采用與之相應(yīng)的方法來構(gòu)造隸屬函數(shù)。
本文的設(shè)計在構(gòu)造模式識別的隸屬函數(shù)時,采用樣板法。首先依據(jù)標(biāo)準(zhǔn)均勻度的特性指標(biāo)值將識別模式分為三大類,即符合標(biāo)準(zhǔn)(模式A1)、幾乎符合標(biāo)準(zhǔn)(模式A2)和不符合標(biāo)準(zhǔn)(模式A3),然后從模糊模式Ai中選出Ki個樣板,并對每個樣板的特性指標(biāo)向量采集實(shí)測值,然后計算這Ki個特性指標(biāo)向量的平均值,即樣板均值,為構(gòu)造隸屬函數(shù)時計算距離作準(zhǔn)備,最后將輸入數(shù)字圖像樣點(diǎn)值相對三個模式做隸屬歸類識別。對應(yīng)三個模式特性指標(biāo)Y及兩個色度信號Cr和Cb(色度信號Cb、Cr可以用在方案擴(kuò)展中)的樣板均值如表1所示。
接下來計算圖像視頻數(shù)據(jù)與各模式均值樣板之間的距離,本系統(tǒng)設(shè)計選擇模糊Lambert距離函數(shù),即:
(A,B)=1n∑ni=1A(ui)-B(ui)A(ui)+B(ui)(1)
令
D=max{d1(U,a1),d2(U,a2),d3(U,a3)},則模糊模式Ai的隸屬函數(shù)為:
Ai(u)=1-di(U,ai)/D; i=1,2,3,…(2)
2.3 利用最大隸屬原則進(jìn)行識別判斷
在Ai(u)的計算結(jié)果中,若A1(u)最大,模式識別判斷屬于模式A1;若A2(u)最大,模式識別判斷屬于模式A2;若A3(u)最大,模式識別判斷屬于模式A3。對于每個像素點(diǎn)的模糊模式識別過程完成。
一幀圖像由640×480個像素點(diǎn)組成,模式識別是針對每一個有效像素點(diǎn)進(jìn)行識別,若判斷巴布劑是否均勻,需要完成對一幀圖像的所有像素點(diǎn)的識別,通過記錄一幀圖像中不合格點(diǎn)個數(shù),然后結(jié)合實(shí)際要求給出判斷信號。
3 基于模糊模式識別的檢測系統(tǒng)實(shí)現(xiàn)
本設(shè)計采用基于CycloneⅡ系列的FPGA(Field-Programmable Gate Array)技術(shù)[7],運(yùn)用Verilog HDL(Hardware Description Language)對系統(tǒng)完成建模與實(shí)現(xiàn)。
3.1 圖像采集、處理、識別系統(tǒng)的硬件平臺
在圖像信息處理過程中為保證實(shí)時性,首先要求圖像處理系統(tǒng)具有處理大量數(shù)據(jù)的能力;其次對系統(tǒng)體積的大小、功能、穩(wěn)定性等也有嚴(yán)格要求。本系統(tǒng)的框圖如圖2所示。
系統(tǒng)各模塊功能簡要描述如下:
1)視頻解碼器ADV7181B配置模塊是基于I2C總線原理,上電后首先要對ADV7181B進(jìn)行初始化配置,完成對其性能、端口、數(shù)據(jù)格式、工作模式等必須通過配置選擇;
2)數(shù)據(jù)傳輸模塊識別出行、場同步信號,根據(jù)需要選擇采集圖像的大小,并將符合ITU-R BT.656標(biāo)準(zhǔn)數(shù)據(jù)轉(zhuǎn)換為符合ITU-R BT.601標(biāo)準(zhǔn)數(shù)據(jù)[8];
3)SDRAM控制器模塊產(chǎn)生控制SDRAM讀寫時序信號,實(shí)現(xiàn)大容量數(shù)字圖像視頻數(shù)據(jù)的控制與緩存[9-10];
4)模糊模式識別模塊用模糊模式識別理論對系統(tǒng)采集的數(shù)字圖像進(jìn)行處理、分析和判別,實(shí)現(xiàn)對巴布劑成型過程中均勻度的檢測。
3.2 模糊模式識別模塊的實(shí)現(xiàn)
該均勻度檢測系統(tǒng)的核心部分是模糊模式識別模塊的實(shí)現(xiàn)。該模塊的實(shí)現(xiàn)步驟如下:
1)提取特征因素(亮度信號Y);
2)提取水平、垂直同步信號HS(Horizontal Sync)和VS(Vertical Sync)[11];
3)提取有效像素點(diǎn)(640×480);
4)用模糊算法對每個像素點(diǎn)進(jìn)行識別;
5)完成一幀圖像所有像素點(diǎn)識別,記錄不合格點(diǎn)數(shù),輸出判斷信號(control)。
視頻數(shù)據(jù)的水平和垂直時序如圖3所示。以水平時序?yàn)槔?,HS為負(fù)時標(biāo)志著一行的開始和結(jié)束,有效的像素在A這段時間傳輸,HS在一行的最后一個像素傳送后,間隔至少B-A時間后拉低,然后保持時長C-這個是減號,還是連接符?請回復(fù)?;貜?fù):減號B為低電平,HS的負(fù)脈沖結(jié)束后,至少保持D-C的時間后開始新的一行。一行的總持續(xù)時間為D,像素有效時間為A,D-A為水平消隱時間[12]。垂直時序與水平時序類似,各對應(yīng)時間段分別用E、F、G、H表示。
視頻數(shù)據(jù)的水平和垂直時序具體參數(shù)為: A=25.4μs,B=26μs,C=29.8μs,D=32.8μs,E=15.3ms,F=15.6ms,G=15.65ms,H=16.7ms。在FPGA中,用Verilog HDL合成滿足上述時序關(guān)系的水平、垂直同步信號,同時還要加一個復(fù)位信號,使模式識別從第一行第一個像素開始,完成對每幀圖像的均勻度的檢測。
在對每個像素點(diǎn)進(jìn)行模糊模式識別的程序設(shè)計中,主要通過有限狀態(tài)機(jī)實(shí)現(xiàn)的[13],如圖4所示。狀態(tài)State0時,分離視頻圖像信號的三個特征指標(biāo)Y、Cr和Cb;轉(zhuǎn)入State1時,將亮度信號Y與模式標(biāo)值對應(yīng)代入式(1)中的分子,求差并取絕對值;轉(zhuǎn)入State2時,將Y與模式標(biāo)值對應(yīng)代入式(1)中的分母,求和;轉(zhuǎn)入State3時,將State1中的差值與State2中的和值作商;轉(zhuǎn)入State4時,求模糊Lambert距離;轉(zhuǎn)入State5和State6時,利用隸屬函數(shù)求值,根據(jù)最大隸屬原則做模式識別,并給出判斷信號。另外,在該模塊的設(shè)計中嵌入了除法器模塊,通過task任務(wù)調(diào)用實(shí)現(xiàn)。
圖5中,data_cr、data_cb、data_y分別為輸入的數(shù)字視頻信號的三個特性指標(biāo),cmd2是讀操作命令,data1和data2是數(shù)據(jù)緩存單元,control為對各像素點(diǎn)進(jìn)行判別后所歸屬的模式類別,以十進(jìn)制標(biāo)識,4是符合厚度標(biāo)準(zhǔn)“100”,2是幾乎符合厚度標(biāo)準(zhǔn)“010”,1是不符合厚度標(biāo)準(zhǔn)“001”;另外,當(dāng)沒有視頻數(shù)據(jù)輸入到模式識別模塊時,control輸出為“0”值。
本系統(tǒng)設(shè)計將巴布劑均勻度檢測結(jié)果的判斷信號輸出給兩個LED燈:A(均勻)、B(不均)。實(shí)驗(yàn)檢測結(jié)果表現(xiàn)為:當(dāng)攝像頭攝取均勻的巴布劑成品時A燈間歇性亮滅;當(dāng)攝取不均勻的巴布劑成品時B等間歇性亮滅。滅的時間表示正在對一幀圖像進(jìn)行基于模式識別的均勻度檢測;亮的時間表示輸出判斷信號的延時。
4 結(jié)語
本文提出一種基于模糊模式識別的巴布劑均勻度檢測系統(tǒng),從實(shí)驗(yàn)和在線檢測結(jié)果看,模糊模式識別的算法比較理想,可以實(shí)現(xiàn)對巴布劑均勻度的實(shí)時檢測。本系統(tǒng)設(shè)計不僅為實(shí)現(xiàn)TDDS制劑成型生產(chǎn)的自動化作了有益的探索性嘗試,而且該系統(tǒng)還可以對其他的指標(biāo)進(jìn)行檢測,對今后TDDS成型生產(chǎn)設(shè)備走向工業(yè)化有著積極的借鑒意義。
參考文獻(xiàn):
[1]
謝光杰,鄧啟華.經(jīng)皮給藥制劑概述及研究現(xiàn)狀[J].內(nèi)江科技,2009,30(9):31-32.
[2]
陳水利,李敬功,王向公.模糊集理論及其應(yīng)用[M].北京:科學(xué)出版社,2005:156-178.
[3]
劉素華,侯惠芳,劉東.模糊模式識別在大氣評定中的作用[J].計算機(jī)工程,2005,31(2):7-10.
[4]
王艷玲,張,羅詩途.基于模糊模式識別的場景圖像分類方法[J].微計算機(jī)信息,2007,23(34):220-221.
[5]
尹建新,樓雄偉,黃美麗.灰度直方圖在木材表面缺陷檢測中的應(yīng)用[J].浙江林學(xué)院學(xué)報,2008,25(3):272-276.
[6]
柯.數(shù)字視頻文件轉(zhuǎn)換算法的設(shè)計與實(shí)現(xiàn)[J].企業(yè)技術(shù)開發(fā),2011,30(9):21-22.
[7]
黃智偉,王彥.FPGA系統(tǒng)設(shè)計與實(shí)踐[M].北京:電子工業(yè)出版社,2005:130-132.
[8]
蔡軍輝.基于FPGA的視頻信號數(shù)字化采集與顯示系統(tǒng)[D].南京:南京航空航天大學(xué),2009.
[9]
何云斌,張玉芬.多端口SDRAM控制器的設(shè)計與實(shí)現(xiàn)[J].微計算機(jī)信息,2009,25(14):49-50,73.
[10]
向興富,袁玉群,譚亞軍.基于FPGA的DDR2 SDRAM數(shù)據(jù)存儲研究[J].貴州大學(xué)學(xué)報:自然科學(xué)版,2010,27(2):70-73.
[11]
陳彬,伍乾永,劉永春.基于FPGA的VGA控制模塊設(shè)計[J].微電子學(xué),2008,38(2):306-308.
[12]
朱奕丹,方怡冰.基于FPGA的圖像采集與VGA顯示系統(tǒng)[J].計算機(jī)應(yīng)用,2011,31(5):1258-1264.
[13]
劉小平,何云斌,董懷國.基于Verilog HDL的有限狀態(tài)機(jī)設(shè)計與描述[J].計算機(jī)工程與設(shè)計,2008,29(4):958-960.
收稿日期:2011-07-25;修回日期:2011-09-21。
基金項(xiàng)目:
國家自然科學(xué)基金資助項(xiàng)目(2009ZX09502)。
關(guān)鍵詞:脫機(jī)手寫藏文識別;GABP神經(jīng)網(wǎng)絡(luò);特征提取
中圖分類號:TP317.2 文獻(xiàn)標(biāo)識碼:A 文章編號:16727800(2013)009007902
基金項(xiàng)目:青海省普通高等學(xué)校研究生創(chuàng)新項(xiàng)目
作者簡介:梁會方(1987-),女,青海師范大學(xué)計算機(jī)學(xué)院碩士研究生,研究方向?yàn)椴匚男畔⑻幚怼?/p>
0引言
模式識別在各個領(lǐng)域中的應(yīng)用非常多,從這些應(yīng)用中可以看到它們的共性,即一個模式識別系統(tǒng)通常包括原始數(shù)據(jù)的獲取和預(yù)處理、特征提取與選擇、分類或聚類、后處理4個主要部分。其中藏文識別需要解決的關(guān)鍵問題是模式分類,其理論基礎(chǔ)是模式識別技術(shù),其中最常用的方法是統(tǒng)計模式識別方法和結(jié)構(gòu)模式識別方法。近年來也有很多人將隱馬爾科夫模型用于手寫識別領(lǐng)域,取得了良好的效果。本文主要介紹統(tǒng)計模式識別、結(jié)構(gòu)模式識別以及使用較多的隱馬爾科夫模型和人工神經(jīng)網(wǎng)絡(luò)模型。
1模式識別
1.1統(tǒng)計模式識別
統(tǒng)計模式識別是依據(jù)統(tǒng)計的原理來建立分類器,其分類器設(shè)計方法主要有貝葉斯決策理論和判別函數(shù)。貝葉斯決策理論基本思想為:在類條件概率密度和先驗(yàn)概率已知或者可以估計的條件下,利用貝葉斯公式比較樣本屬于兩類的后驗(yàn)概率,然后將類別決策為后驗(yàn)概率大的一類,從而使總體錯誤率最小。常見的一種貝葉斯決策為最小錯誤率貝葉斯決策[1],其決策規(guī)律如下:
如果P(w\-1|x)>P(w\-2|x),則x∈w\-1;反之,則x∈w\-2。
通過貝葉斯公式 ,后驗(yàn)概率的比較可以轉(zhuǎn)化為類條件概率密度的比較,離散情況下也是類條件概率的比較,而這種條件概率或條件密度則反映了在各類模型下觀察到當(dāng)前樣本的可能性或似然度,因此可以定義兩類之間的似然比或?qū)?shù)似然比進(jìn)行決策。
該方法的主要優(yōu)點(diǎn)是抗干擾能力強(qiáng),且易于實(shí)現(xiàn),但是應(yīng)用中的主要缺點(diǎn)是細(xì)分能力較弱,區(qū)分相似字的能力較差。
1.2結(jié)構(gòu)模式識別
藏文文字結(jié)構(gòu)復(fù)雜,但同時具有相當(dāng)?shù)囊?guī)律性,這種文字都含有豐富的結(jié)構(gòu)信息,因此可以獲取這些組字的規(guī)律以及藏文字符信息的結(jié)構(gòu)特征作為識別的依據(jù)。結(jié)構(gòu)模式識別[2]的主要思想就是文字圖像劃分為很多基本組合,然后利用一些相似性度量準(zhǔn)則確定出這些組合之間的關(guān)系,以及這些字符圖像模式和一些典型模式之間利用一些相似性度量準(zhǔn)則確定的相似程度。
1.3隱馬爾科夫模型
HMM模型[3]是將特征值和一個狀態(tài)轉(zhuǎn)移模型聯(lián)系起來,它是一個雙重隨機(jī)過程,其中狀態(tài)轉(zhuǎn)移過程是不可觀察即隱藏的馬爾科夫模型,而可觀察事件的隨機(jī)過程是隱藏狀態(tài)轉(zhuǎn)換過程的隨機(jī)函數(shù)。HMM有3個基本問題及常用算法:①評估問題:前后向遞推算法;②解碼問題:Viterbi算法;③學(xué)習(xí)問題:BaumWelch算法。
HMM模型可以用一種特定的神經(jīng)網(wǎng)絡(luò)模型來模擬[4],該模型收斂性較差,易陷入局部極值。
1.4人工神經(jīng)網(wǎng)絡(luò)模型
神經(jīng)系統(tǒng)是由大量神經(jīng)細(xì)胞構(gòu)成的復(fù)雜網(wǎng)絡(luò),是一個由大量簡單的處理單元組成的高度復(fù)雜的大規(guī)模非線性自適應(yīng)系統(tǒng)。神經(jīng)網(wǎng)絡(luò)是一個高度并行的分布處理結(jié)構(gòu),它是非線性的,具有自組織和自學(xué)習(xí)的能力。神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)的模式識別不同,能夠直接輸入數(shù)據(jù)并進(jìn)行學(xué)習(xí),用樣本訓(xùn)練網(wǎng)絡(luò)并實(shí)現(xiàn)識別。它是非參數(shù)的識別方法,不需要傳統(tǒng)方法中的建模、參數(shù)估計以及參數(shù)校驗(yàn)、重新建模等復(fù)雜過程。
在字符識別領(lǐng)域常用的網(wǎng)絡(luò)模型有:BP網(wǎng)絡(luò)、RBF網(wǎng)絡(luò)、自組織網(wǎng)絡(luò)、Hopfield網(wǎng)絡(luò)、SVM網(wǎng)絡(luò)等。
BP網(wǎng)絡(luò)是一種多層前饋網(wǎng)絡(luò)[5],是一種依靠反饋值來不斷調(diào)整節(jié)點(diǎn)之間的連接權(quán)值而構(gòu)建的一種網(wǎng)絡(luò)模型。它由輸入層、隱藏層、輸出層相互連接構(gòu)成,其結(jié)構(gòu)如圖1所示。
網(wǎng)絡(luò)的學(xué)習(xí)訓(xùn)練過程由信號的正向傳播與誤差的反向傳播組成,其中正向傳播是把輸入樣本從輸入層輸入,經(jīng)各隱層處理后傳向輸出層,若輸出層的實(shí)際輸出和期望輸出不符,則轉(zhuǎn)入誤差的反向傳播階段。誤差反傳是將輸出誤差以某種形式通過隱層向輸入層逐層反傳,并將誤差分?jǐn)偨o各層的所有單元,從而獲得各層單元的誤差信號,此誤差信號即作為修正各單元權(quán)值的依據(jù)。各層權(quán)值調(diào)整過程是周而復(fù)始地進(jìn)行,直到網(wǎng)絡(luò)輸出的誤差減少到可以接受的程度。
2遺傳算法改進(jìn)的BP網(wǎng)絡(luò)
藏文字符識別是中國多文種信息處理系統(tǒng)的重要組成部分,脫機(jī)手寫藏文識別在很多領(lǐng)域有廣闊的使用前景。在現(xiàn)有漢字以及數(shù)字識別方法的基礎(chǔ)上,提出了很多預(yù)處理和模式識別的方法,大大提高了手寫藏文的識別精度。為了提高脫機(jī)手寫藏文識別精度,本文將GABP神經(jīng)網(wǎng)絡(luò)應(yīng)用于脫機(jī)手寫藏文識別分析中,識別過程分為兩步:訓(xùn)練階段、識別階段。在訓(xùn)練階段,提取訓(xùn)練樣本集的特征,建立網(wǎng)絡(luò)模型,以輸入為目標(biāo),保存網(wǎng)絡(luò)的連接權(quán)值和閾值以及字符特征;在識別階段,將待識別的藏文特征送入網(wǎng)絡(luò)運(yùn)行,待網(wǎng)絡(luò)運(yùn)行到平衡狀態(tài),將輸出結(jié)果與數(shù)字特征庫的值進(jìn)行比較,識別出藏文字符。
BP網(wǎng)絡(luò)是目前應(yīng)用最多的神經(jīng)網(wǎng)絡(luò),這主要是因?yàn)锽P算法[6]有較強(qiáng)的非線性映射能力、泛化能力以及容錯能力。但是它本身存在大量的問題,突出表現(xiàn)在:BP算法的學(xué)習(xí)速度很慢,需要較長的訓(xùn)練時間;網(wǎng)絡(luò)訓(xùn)練失敗的可能性較大,易陷入局部極小點(diǎn),逼近局部極小值[5]。為了改善這些缺點(diǎn),通常會改變隱層數(shù)量,隱藏層一般根據(jù)具體情況制定,但是增加隱藏層的層數(shù)和隱藏層神經(jīng)元個數(shù)不一定總能夠提高網(wǎng)絡(luò)精度和表達(dá)能力。而遺傳算法的基本作用對象是多個可行解的集合,而非單個可行解。它同時處理多個個體,同時對搜索空間中的多個解進(jìn)行評估,使得遺傳算法具有較好的全局搜索性能,減少了陷于局部最優(yōu)解的可能性,同時,它本身具有良好的并行性。所以用遺傳算法學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的權(quán)重及拓?fù)浣Y(jié)構(gòu)[6],對神經(jīng)網(wǎng)絡(luò)進(jìn)行改進(jìn),提高了神經(jīng)網(wǎng)絡(luò)的精度,同時也提高了遺傳算法的局部搜索能力。在模式分類應(yīng)用中進(jìn)行數(shù)據(jù)預(yù)處理,利用遺傳算法進(jìn)行特征提取,其后用神經(jīng)網(wǎng)絡(luò)進(jìn)行分類。GABP混合學(xué)習(xí)算法結(jié)構(gòu)如圖2所示,采用GA優(yōu)化BP網(wǎng)絡(luò)權(quán)值。
①BP網(wǎng)絡(luò)參數(shù)初始化;
②按BP網(wǎng)絡(luò)的權(quán)值和閾值連接隨機(jī)產(chǎn)生染色體;
③計算染色體的適應(yīng)值以及迭代次數(shù),如果達(dá)到要求,則結(jié)束GA算法,產(chǎn)生最佳個體,如果沒有達(dá)到,進(jìn)行下一步;
④按適應(yīng)度進(jìn)行選擇、交叉和變異操作,產(chǎn)生新的染色體,重復(fù)上一步;
⑤將產(chǎn)生的最好個體依次映射到BP網(wǎng)絡(luò)中對應(yīng)的權(quán)值和閾值,并將此作為BP網(wǎng)絡(luò)的初始值;
⑥利用BP網(wǎng)絡(luò),判斷誤差是否達(dá)到預(yù)定要求,達(dá)到就結(jié)束,如果沒有,則BP網(wǎng)絡(luò)反向傳播,返回上一步。
3結(jié)語
本文分析了文字識別的常用方法及其優(yōu)缺點(diǎn),著重分析了手寫藏文識別征提取和分類器設(shè)計兩個關(guān)鍵技術(shù),并對藏文識別研究領(lǐng)域今后的研究方向和發(fā)展前景提出了一些看法。在原BP網(wǎng)絡(luò)的基礎(chǔ)上改進(jìn)GABP神經(jīng)網(wǎng)絡(luò),可以提高其學(xué)習(xí)速度,加快收斂速度,相比而言識別精度較高、訓(xùn)練時間較短,且具有較強(qiáng)的魯棒性。由于神經(jīng)網(wǎng)絡(luò)和遺傳算法已經(jīng)發(fā)展得比較成熟,將兩者結(jié)合的方法用于藏文識別,具有很大的實(shí)用價值,同時將GABP神經(jīng)網(wǎng)絡(luò)用于藏文識別,有助于神經(jīng)網(wǎng)絡(luò)用于藏文識別的可能性和有效性。
參考文獻(xiàn):
[1]張學(xué)工.模式識別[M].北京:清華大學(xué)出版社,2010.
[2]吳剛,德熙嘉措,黃鶴鳴.印刷體藏文識別技術(shù)[C].第十屆全國少數(shù)民族語言文字信息處理學(xué)術(shù)研討會論文集,2005.
[3]劉衛(wèi),李和成.基于局部保持投影與隱馬爾可夫模型的維文字符識別[J].計算機(jī)應(yīng)用,2012,32(8).
[4]梁弼,王維蘭,錢建軍.基于HMM的分類器在聯(lián)機(jī)手寫藏文識別中的應(yīng)用[J].微電子學(xué)與計算機(jī),2009,26(4).
級別:北大期刊
榮譽(yù):中國優(yōu)秀期刊遴選數(shù)據(jù)庫
級別:省級期刊
榮譽(yù):中國期刊全文數(shù)據(jù)庫(CJFD)
級別:部級期刊
榮譽(yù):中國期刊全文數(shù)據(jù)庫(CJFD)
級別:部級期刊
榮譽(yù):中國優(yōu)秀期刊遴選數(shù)據(jù)庫
級別:部級期刊
榮譽(yù):中國期刊全文數(shù)據(jù)庫(CJFD)