公務(wù)員期刊網(wǎng) 精選范文 平行四邊形的認(rèn)識教學(xué)案例范文

平行四邊形的認(rèn)識教學(xué)案例精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的平行四邊形的認(rèn)識教學(xué)案例主題范文,僅供參考,歡迎閱讀并收藏。

平行四邊形的認(rèn)識教學(xué)案例

第1篇:平行四邊形的認(rèn)識教學(xué)案例范文

生成性資源是在課堂教學(xué)資源的基礎(chǔ)上發(fā)展而來的一種教育資源,可能出現(xiàn)在豐富多樣的數(shù)學(xué)活動中,也可能出現(xiàn)在師生的靈感與智慧中。但有一點(diǎn)可以肯定,課堂教學(xué)中,只要我們教師善于發(fā)現(xiàn)、合理利用生成性資源,它將發(fā)揮最佳效能。

教學(xué)案例一:“乘法的初步認(rèn)識”

多媒體展示綠蔭的草地上有一條河,河上有座小橋,周圍有幾棵小樹,然后閃現(xiàn)出六對小兔。

師:小朋友們,你們看到了什么?

生1:我看到了綠地、小河,河上有座小橋。

生2:還有小兔子呢!

師:說得很好,大家很善于觀察。還有呢?

生3:小兔子們正在開聯(lián)歡會呢!

生4:今天動物學(xué)校開學(xué)了,小兔子們蹦蹦跳跳地去上學(xué)。

……

教學(xué)案例二:“軸對稱圖形”

師:對于三角形、梯形、五邊形、圓是不是軸對稱圖形,同學(xué)們已經(jīng)有了充分的認(rèn)識,但對于平行四邊形到底是不是軸對稱圖形卻出現(xiàn)了不同的聲音??磥?,僅依靠觀察、猜測得出的結(jié)論并不準(zhǔn)確,還是讓我們動手實(shí)驗(yàn)來驗(yàn)證吧。

生1:我把平行四邊形對折后,發(fā)現(xiàn)折痕的兩邊是完全一樣的梯形,所以我認(rèn)為它是一個軸對稱圖形。

生2:我不同意。雖然平行四邊形對折后兩邊的圖形形狀一樣,但并沒有完全重合,所以我認(rèn)為它不是軸對稱圖形。

師:你能緊緊抓住軸對稱圖形的定義來分析,真好!

生3:我不同意。雖然平行四邊對折后兩邊沒有完全重合,但只要我們沿著折痕剪開,換個方向兩邊就能完全重合,所以我認(rèn)為它是軸對稱圖形。

生4:不對。只有對折后兩邊完全重合,才能說是軸對稱圖形,剪開后重合是不算的。

生5:再說,剪開后原來圖形就被破壞了,我們不能破壞原來的圖形。

生6:人家明明說的是“對折后”,肯定是不能剪開的。

師:在這么多事實(shí)面前,還有同學(xué)認(rèn)為平行四邊形是軸對稱圖形嗎?

生7:我有補(bǔ)充。如果平行四邊形四條邊長度相等的話,將它對折后兩邊就能完全重合,所以我認(rèn)為特殊的平行四邊形是軸對稱圖形。

……

思考:

1.生成需要捕捉,分而治之

上述教學(xué)中的生成性資源產(chǎn)生于師生互動的雙邊活動中,緣于某一個學(xué)生最原始的質(zhì)疑。洛扎諾夫認(rèn)為:“人在清醒而放松的狀態(tài)下,可暗示性和有意識的判斷能力會同時出現(xiàn)?!蔽覀兛梢岳眠@種心理暗示功能,通過贊揚(yáng)學(xué)生獨(dú)特的質(zhì)疑,鼓勵學(xué)生自主探究尋求答案,讓他們獲得一種心理暗示,從而自覺地形成一種可貴的學(xué)習(xí)品質(zhì)。

上述兩個教學(xué)案例,第一位教師顯然沒有利用好課堂上出現(xiàn)的生成性資源,面對學(xué)生的種種“創(chuàng)造”,教師只能無奈地予以一一肯定。事實(shí)上,數(shù)學(xué)課上的生成應(yīng)該是學(xué)生思考的結(jié)果,沒有思考的生成性資源都應(yīng)視為是無效的。究其原因,我認(rèn)為教師一開始提出的問題“小朋友們,你們看到了什么”存在很大的問題,再加上教師一味地追求生成,沒有及時調(diào)整教學(xué),導(dǎo)致教學(xué)失控。而第二位教師靈活運(yùn)用教學(xué)方法,抓住知識的生長點(diǎn)有效引導(dǎo)并及時評價,創(chuàng)建了和諧、平等的對話空間。如當(dāng)學(xué)生對平行四邊形是否是軸對稱圖形發(fā)生分歧時,教師說“看來,僅靠觀察、猜測得出的結(jié)論并不準(zhǔn)確,還是讓我們動手實(shí)驗(yàn)來驗(yàn)證吧”;又如,教師說“在這么多的事實(shí)面前,還有同學(xué)認(rèn)為平行四邊形是軸對稱圖形嗎”。這樣,既讓先前認(rèn)為平行四邊形是軸對稱圖形的學(xué)生對軸對稱圖形的定義有了深刻的理解,又啟發(fā)學(xué)生發(fā)現(xiàn)菱形是軸對稱圖形,更加完善自己的知識體系。

2.生成需要預(yù)設(shè),左右逢源

“凡事預(yù)則立,不預(yù)則廢?!睕]有預(yù)設(shè)的生成往往是盲目的、低效的。預(yù)設(shè)就是提前考慮突發(fā)事件的應(yīng)對措施和引導(dǎo)方法,有助于達(dá)到教學(xué)的佳境。我們備課、設(shè)計(jì)科學(xué)的教學(xué)環(huán)節(jié),是預(yù)設(shè);我們猜想在這樣的環(huán)節(jié)中學(xué)生會有何種反應(yīng)及如何處理,也是預(yù)設(shè);我們考慮通過這樣的設(shè)計(jì)學(xué)生會達(dá)到怎樣的理解程度,有怎樣的學(xué)習(xí)效果,同樣是預(yù)設(shè)。同時,這些方面在一定程度上又可以說是生成的范疇。只有課前的精心預(yù)設(shè),才能在課堂上有效引導(dǎo)與動態(tài)生成。因此,我們需要提前預(yù)設(shè),以獲得更有效的生成。如教學(xué)案例一中,教師試圖讓學(xué)生通過自己的觀察歸納出“幾個幾”導(dǎo)入新課教學(xué),但學(xué)生一直游離于教師的期望之外,這說明教師缺少課前的精心預(yù)設(shè),導(dǎo)致教學(xué)延誤了時間,弄巧成拙。而教學(xué)案例二,精彩的生成緣于一個學(xué)生可貴的質(zhì)疑,“一石激起千層浪”,這個疑問引發(fā)了學(xué)生強(qiáng)烈的探究興趣,他們積極主動地用自己已有的經(jīng)驗(yàn)和方法去觀察、猜想、驗(yàn)證。這樣的過程才是學(xué)生真正自主學(xué)習(xí)的過程,才能出現(xiàn)意料之外的精彩。

第2篇:平行四邊形的認(rèn)識教學(xué)案例范文

關(guān)鍵詞:延遲評價 緩 等 停

心理學(xué)家研究表明,一堂課中對學(xué)生的反饋信息,并非一律都要“及時”評價。因?yàn)橐恍┬路f獨(dú)特、別出心裁、有創(chuàng)造性的見解,往往出現(xiàn)在思維過程的后半段,即所謂的“頓悟”和“靈感”。倘若過早地對一個可能有著多種答案的問題給予終結(jié)性的評價,勢必會扼殺學(xué)生創(chuàng)新和發(fā)散思維的火花。在多年的數(shù)學(xué)課堂教學(xué)實(shí)踐中,我發(fā)現(xiàn),巧妙運(yùn)用延時評價,能充分挖掘?qū)W生的學(xué)習(xí)潛力,讓學(xué)生有更廣闊的思維空間,有利于學(xué)生創(chuàng)新思維的培養(yǎng)。

一、緩一緩——誘發(fā)學(xué)生的創(chuàng)新意識

課堂教學(xué)中一個有效的開放性問題,往往可以激發(fā)學(xué)生許多的問題答案,老師不要急于對學(xué)生進(jìn)行評價,而是要緩一緩,為學(xué)生創(chuàng)設(shè)一種自然的思維積極發(fā)展?fàn)顟B(tài)。如果學(xué)生剛產(chǎn)生一個想法就得到了老師的終結(jié)性評價,那么其余學(xué)生的新想法就不會緊接著出現(xiàn),原來的想法也不能變得更加深入。正確運(yùn)用延遲評價誘發(fā)學(xué)生的積極思維,就能在解決某一問題的過程中,引導(dǎo)學(xué)生積極思考、互相啟發(fā)、暢所欲言,有利于發(fā)展學(xué)生的創(chuàng)新思維能力。

【教學(xué)案例 ■ 蘇科版五年級下冊《認(rèn)識單位“1”》】

師:(寫出1/3)看到1/3,你想到了什么?

生1:我想到,把一個蘋果分成三份,其中一份,就是1/3;

生2:應(yīng)該說把一個蘋果平均分成3份,其中一份就是1/3。

生3:把一張紙平均分成3份,每份是這張紙的1/3;

生4:把一個大餅平均分成3份,每份是1/3;

師:1/3還可以表示其它意思嗎?

生:把6個蘋果平均分成三份,每份是1/3。

師:(課前教師在紙上畫上一些蘋果、梨及桃子,一個個剪下來,預(yù)備在課堂上用,按上面學(xué)生說的意思,把蘋果貼在黑板上)你們能否想辦法,在添上一些蘋果,也表示1/3?

生:(想了想說)能!

生1:(學(xué)生一邊說一邊貼)再添三個蘋果,每份添一個,這樣每份也是1/3。

生2:我也能!再添上6個蘋果,每份再添兩個,這樣每份也是1/3……

師:我們是把一張紙、一個蘋果、6個蘋果……,看成一個整體,也就是看作單位“1”。在我們生活中還有哪些,也可以看作單位“1”?

生1:可以把“8支鉛筆”看作單位“1”。

生2:也可以把我們整個班級的人數(shù)看作單位“1”。

生3:也可以把世界上所有的國家看作單位“1”……

     法國教育家第斯多惠說:“教育的藝術(shù)不在于傳授本領(lǐng),而在于激勵、喚醒和鼓舞?!闭n一開始,我用“看到1/3,你想到了什么”這一開放性問題,讓學(xué)生寬松地想、自主地說,說的過程中充分反映了學(xué)生對分?jǐn)?shù)的理解。當(dāng)學(xué)生講到“1/3可以看成把6個蘋果平均分成3份,每份是1/3”時,我沒有就此下結(jié)論,而是抓住這一有利時機(jī),問學(xué)生:“誰能想辦法,再添上一些蘋果,每份也表示1/3?”學(xué)生稍作思考,很快想出了辦法,有的說:“再添上3個蘋果,每份添一個,這樣每份也是1/3”;也有的說:“再添上6個蘋果,每份再添兩個,這樣每份也是1/3”……。學(xué)生各抒己見,思維活躍,說出了各種想法。學(xué)生在在交流中體驗(yàn)到:只要把總數(shù)平均分成3份,每份就是總數(shù)的1/3,學(xué)生對1/3的含義是自己理解的,而不是教師灌輸給學(xué)生的現(xiàn)成知識結(jié)論。就這樣緩一緩,通過延遲評價,誘發(fā)了學(xué)生創(chuàng)新的火花,學(xué)生就水到渠成地掌握了分?jǐn)?shù)的意義。

二、等一等——挖掘?qū)W生的學(xué)習(xí)潛力。

心理學(xué)家馬斯洛認(rèn)為,人類具有大量尚未加以利用的潛力。好的的課堂教學(xué),不僅要發(fā)展學(xué)生現(xiàn)有能力,更重要的是要開發(fā)那些處于胚胎或萌芽狀態(tài)的潛力。這種學(xué)習(xí)潛力,在維羅茨基的“最近發(fā)展區(qū)”理論中,是指現(xiàn)有發(fā)展水平與最近發(fā)展水平之間的距離。而延遲評價能最大限度的激發(fā)學(xué)生的求知欲,為發(fā)展學(xué)生的潛能提供了條件。在孩子們急于表達(dá)的時候,老師引導(dǎo):“你認(rèn)為這是最好的說法了嗎?”“老師相信你還有更多的想法,想出來,比一比,辨一辨,哪一個答案更精彩!”“你真了不起這么快就有了自己的見解,與同桌交流一下,看看你們的想法有什么不同,誰的更恰當(dāng)?”……,延遲評價所激發(fā)的學(xué)生的潛力是驚人的,學(xué)生的表現(xiàn)將比我們老師期待的更恰當(dāng),更精彩,更全面,當(dāng)然也更能啟迪人的思維。

【教學(xué)案例 ■ 蘇科版四年級下冊《認(rèn)識平行四邊形》】

 [片斷一]做一做,感知平行四邊形特征。

師:同學(xué)們在課前都準(zhǔn)備了一些材料,你能利用這些材料制作出一個平行四邊形嗎?先在小組里說一說你準(zhǔn)備怎樣做。

師:下面就請你選擇合適的材料做出一個平行四邊形來吧!做好以后,再和小組里的同學(xué)說說你是怎樣做的、怎樣想的。

師:你是用什么材料做的?是怎樣做的?給大家介紹一下吧!

生1:我是用橡皮筋在釘子板上圍成的。在圍上、下兩條邊時釘子數(shù)要一樣,而且要平行。

生2:我是用四根塑料吸管拼接成的。這四根吸管不都是一樣長的,在放上、下兩條邊時我選的吸管是同樣長的并放成平行,然后在左、右兩邊也擺上兩根同樣長的吸管就做成了一個平行四邊形。

生3:我是在方格紙上畫出了一個平行四邊形。

師(順勢呼吁):同學(xué)們你們想不想也在方格紙上畫出一個平行四邊形?

生(齊呼):想!

[片斷二]畫一畫,發(fā)現(xiàn)平行四邊形特征。

學(xué)生畫平行四邊形

師(巡視并擇優(yōu)展示圖例):如果把平行四邊形畫下來,就是這樣的一個平面圖形。

師:結(jié)合我們剛才做平行四邊形的過程想一想,平行四邊形可能有什么特征?

生1:對邊平行。

生2:對邊相等。

生3:對角相等。

師:很好!同學(xué)們發(fā)現(xiàn)了平行四邊形可能具有的三點(diǎn)特征?,F(xiàn)在每個小組可以任選一個特征來驗(yàn)證。

學(xué)生交流選擇對象,但沒有一組選擇“對邊平行”這一特征來驗(yàn)證的。

教師尊重學(xué)生的選擇。

[片斷三]做一做,總結(jié)平行四邊形特征。

師:你是用什么方法來驗(yàn)證的?

生1:我們用直尺測量了平行四邊形的四條邊,發(fā)現(xiàn)一組對邊的長度是相等的,另一組對邊也相等,所以我們確定平行四邊形對邊相等。

生2:其實(shí)我在釘子板圍平行四邊形時就發(fā)現(xiàn)上、下兩邊的釘子個數(shù)是一樣的,左、右兩邊 自然也一樣,就能確定平行四邊形對邊相等。

生3:我先畫了一個平行四邊形,然后剪下來,用對折的方法驗(yàn)證了平行四邊形的對角是相等的。

師:驗(yàn)證時遇到困難了嗎?

生3:是的,折的時候有點(diǎn)吃力!

生4(舉手搶說):沒有啊!我折起來特方便,我還發(fā)現(xiàn)平行四邊形是軸對稱圖形!

師:哦!你也通過對折驗(yàn)證了平行四邊形對角相等,居然還有新的發(fā)現(xiàn)。(對于學(xué)生的這一新發(fā)現(xiàn),顯然是老師課前沒有預(yù)設(shè)到的。)

師:能展示一下嗎?

生4上臺演示操作。

底下的一些同學(xué)開始騷動,并有生5提出疑問:“為什么我的平行四邊形對折了并不重合,而你的就能?”

師:請你們仔細(xì)觀察生4的平行四邊形,和你自己的有什么區(qū)別?

生5:噢!他的平行四邊形4條邊都一樣長。

生6:他畫的是一個菱形!

師:你們的發(fā)現(xiàn)都正確,真好!菱形是特殊的平行四邊形,的確是軸對稱圖形,而一般的平行四邊形正如大家發(fā)現(xiàn)的一樣是不對稱的。

師:那“對邊平行”這一特征誰來驗(yàn)證呢?

生齊答:你來驗(yàn)證?。?/p>

師:一定要我來嗎?

生齊答:一定!

師:我一個人有些困難,誰來幫幫我,我可以做你的助手!

生7:我來!

有學(xué)生自告奮勇地接受任務(wù)并上臺演示,用畫平行線的方法來驗(yàn)證了“對邊平行”這一特征,教師在一旁協(xié)助。

師:非常感謝你的幫助!現(xiàn)在誰來總結(jié)一下平行四邊形有哪些特征?

生一一整理作答。

     當(dāng)學(xué)生剛說出一種想法或一種方法,如果老師立即給予熱烈的表揚(yáng),受表揚(yáng)的學(xué)生,固然興奮之至,能更好的激發(fā)學(xué)習(xí)興趣,然而一時半晌難以平靜,對于后面的課常教學(xué)能否積極給予關(guān)注?此時提前評價將會對其他學(xué)生產(chǎn)生負(fù)面影響,他們還沒來得及接收信息,更沒有時間發(fā)表自己的觀點(diǎn)就被老師像導(dǎo)游一樣匆匆領(lǐng)向下一個知識點(diǎn)。本例中教師通過讓學(xué)生充分說說制作平行四邊形時是怎樣想、怎樣做、怎樣驗(yàn)證的,讓學(xué)生充分展示了思維的過程。尤其在學(xué)生提出“發(fā)現(xiàn)平行四邊形是軸對稱圖形” 后,沒有及時對該學(xué)生的意見進(jìn)行評價,而是機(jī)智地延長了學(xué)生思考的時間,“能展示一下嗎?”這樣也給其他學(xué)生提供了進(jìn)一步思考的機(jī)會,促使學(xué)生更加深入地進(jìn)行思考。在學(xué)生思維的啟動過程中,如果過早地評價,往往會成為思維展開和深入的抑制因素。運(yùn)用延遲評價,讓教師充當(dāng)了悠閑的看客,使學(xué)生成了課堂的主人。。

3、停一停——拓展學(xué)生的思維空間

學(xué)生思維的培養(yǎng)需要適宜的土壤與溫度,課堂上要給學(xué)生以思考的空間,要允許學(xué)生犯錯誤,讓錯誤引起爭辯,形成思維交鋒,讓課堂成為學(xué)生展現(xiàn)思維和才華的舞臺。延遲評價通過延長學(xué)生思考的時間,讓學(xué)生獲得了獨(dú)立自主的思維空間, 有了思考的真正自由,使學(xué)生個性思維和個性品質(zhì)得到充分發(fā)展。當(dāng)學(xué)生回答一個問題后,教師語氣的停頓、眼神、表情的期待等給予學(xué)生的暗示,都可以使學(xué)生產(chǎn)生思考問題的意識與愿望。這種學(xué)習(xí)心理的調(diào)節(jié)必然帶來學(xué)習(xí)行為的調(diào)整。讓學(xué)生自覺地投入到思維活動中,思考問題的正確答案或解決問題的措施。

【教學(xué)案例 ■ 蘇科版六年級下冊《正反比例的意義》】

“判斷‘圓的面積和它的半徑’中的兩種量是否成比例,成什么比例

師:“圓的面積和它的半徑”是否成比例,成什么比例?請說說你們的判斷。

生1:圓的面積和它的半徑成正比例。

生2:圓的面積和它的半徑不成比例。

師:同學(xué)們有兩種意見,到底哪一種答案是正確的,我們通過辯論賽的形式來辯一辯。同意這兩個量成正比例的為正方,同意這兩個量成反比例的為反方。

生齊呼:耶!

正方代表:因?yàn)閳A的面積除以半徑的平方等于圓周率,比值一定,所以這兩個量成正比例。

反方代表:因?yàn)閳A的面積除以半徑的平方等于圓周率,所以圓的面積應(yīng)該和半徑的平方成正比例,而不是和半徑成正比例,圓的面積和半徑是不成比例。

師:聽了剛才兩位同學(xué)的發(fā)言,請你們再次進(jìn)行選擇。

師:要判斷這兩個量是否成正比例,關(guān)鍵要看什么?

生齊答:看它們的比值是否一定。

師:那好,我們用圓的面積比半徑看等于什么?(師邊說邊結(jié)合板書)

生3:等于圓周率乘半徑。(沒等老師板書完這位同學(xué)已脫口而出)

師:那這個值是一定的嗎?

生齊答:不一定。

師:為什么?

生4:因?yàn)閳A的面積隨著半徑的變化而變化,半徑在變化,半徑乘圓周率的積也在變,也就是比值在變。

師:那圓的面積和圓的半徑能成比例嗎?

生齊答:不能。

師:那圓的面積應(yīng)該和誰成正比例?

生齊答:圓的面積應(yīng)該和半徑的平方成正比例。

…… ……

第3篇:平行四邊形的認(rèn)識教學(xué)案例范文

一、善于利用有效教學(xué)資源,奠定初中生能動學(xué)習(xí)“基調(diào)”

興趣是最好的老師,情感是學(xué)生能動學(xué)習(xí)探知的內(nèi)在“動力”.初中生處于人生發(fā)展的重要階段,既有主動探知學(xué)習(xí)的積極特性,又有厭惡畏懼學(xué)習(xí)的消極特性,如何“揚(yáng)”積極之“長”,“避”消極之“短”,這就需要教師重視學(xué)生積極情感的培養(yǎng)和內(nèi)在潛能的激發(fā).教學(xué)實(shí)踐證明,貼近學(xué)生“最近發(fā)展區(qū)”的教學(xué)情感,更能夠激起學(xué)生積極主動學(xué)習(xí)的內(nèi)在“欲望”.因此,初中數(shù)學(xué)教師在能力培養(yǎng)過程中,要將主動學(xué)習(xí)情感激發(fā)作為學(xué)習(xí)能力培養(yǎng)的首要條件和基礎(chǔ),遵循學(xué)生認(rèn)知和情感發(fā)展規(guī)律,利用數(shù)學(xué)學(xué)科課堂教學(xué)中的教材、學(xué)生、多媒體等現(xiàn)有教學(xué)資源,設(shè)置貼近學(xué)生情感“敏感區(qū)”的教學(xué)情境,讓學(xué)生產(chǎn)生自主學(xué)習(xí)的“沖動”,能動學(xué)習(xí)的“激情”.如,在“圖形的平移和旋轉(zhuǎn)”教學(xué)活動中,由于初中生空間思維能力還處于較低的水平,空間想象能力較弱,教師為提升初中生的學(xué)習(xí)情感,利用現(xiàn)代化的教學(xué)多媒體資源,制作“圖形的平移和旋轉(zhuǎn)”教學(xué)課件,通過電腦、電視等教學(xué)資源,通過形象性、直觀性的動畫效果,進(jìn)行具體的展示.這樣,初中生能夠在現(xiàn)代化教學(xué)資源創(chuàng)設(shè)的教學(xué)情境,學(xué)習(xí)情感、探知興趣得到有效激發(fā),主動學(xué)習(xí)意識顯著增強(qiáng).如,在“一次函數(shù)的圖形和性質(zhì)實(shí)際問題運(yùn)用”教學(xué)中,教師可以該知識內(nèi)容的生活性特點(diǎn),設(shè)置與學(xué)生生活實(shí)際緊密聯(lián)系的“銀行存款”、“通訊收費(fèi)”等問題情境,激發(fā)學(xué)生內(nèi)在能動學(xué)習(xí)“欲望”.

二、重視實(shí)踐鍛煉過程指導(dǎo),傳授初中生探究動手“技巧”

實(shí)踐是檢驗(yàn)真理的唯一標(biāo)準(zhǔn).實(shí)踐是學(xué)生各項(xiàng)學(xué)習(xí)技能進(jìn)行鞏固提升的重要基礎(chǔ).教育實(shí)踐學(xué)認(rèn)為,學(xué)生學(xué)習(xí)能力的形成過程,也就是學(xué)生不斷進(jìn)行探究、不斷進(jìn)行實(shí)踐的前進(jìn)發(fā)展過程.同時,直接經(jīng)驗(yàn)比間接經(jīng)驗(yàn),給學(xué)生留下的“印跡”更為“深刻”和“持久”.因此,初中數(shù)學(xué)在教學(xué)活動中,要發(fā)揮學(xué)生內(nèi)在能動特性,提供學(xué)生進(jìn)行實(shí)踐動手的教學(xué)情境,注重學(xué)生探究實(shí)踐過程的指導(dǎo),讓學(xué)生在實(shí)踐、探究、思辨過程中,逐步掌握和領(lǐng)會進(jìn)行探究實(shí)踐的能力技巧.

圖1如,在“運(yùn)用平行四邊形的性質(zhì)解答問題”的教學(xué)過程中,教師抓住本節(jié)課的教學(xué)目標(biāo)和重難點(diǎn)內(nèi)容,將傳授運(yùn)用平行四邊形的性質(zhì)進(jìn)行解答問題的策略,作為教學(xué)活動的主要任務(wù),設(shè)置“如圖1所示,在平行四邊形ABCD中,E在AC上,AE=2EC,F(xiàn)在AB上,BF=2AF,如果BEF的面積為2 cm2,求平行四邊形ABCD的面積”問題教學(xué)情境,要求學(xué)生開展探究、分析問題條件活動,學(xué)生通過探析認(rèn)識到,該問題案例解答的關(guān)鍵是能夠?qū)ζ叫兴倪呅蔚男再|(zhì)內(nèi)容進(jìn)行有效運(yùn)用,建立等量關(guān)系式,進(jìn)行問題的有效解答.此時,教師在學(xué)生問題解答基礎(chǔ)上,引導(dǎo)學(xué)生進(jìn)行該類型問題案例解題策略的總結(jié)分析活動.學(xué)生借助于“親身”實(shí)踐,闡述了解題的策略和途徑,教師進(jìn)行針對性的總結(jié)和歸納,最終形成運(yùn)用平行四邊形的性質(zhì)解答問題的一般方法和策略,為學(xué)生的高效探究活動提供了方法和策略“支持”.

三、放大數(shù)學(xué)問題發(fā)散特性,提升初中生創(chuàng)新思維“水準(zhǔn)”

思維能力水平是學(xué)生智力發(fā)展水平的基礎(chǔ)和表現(xiàn),更是學(xué)生有效探究、分析問題的智力保障.數(shù)學(xué)學(xué)科作為一門既相互獨(dú)立,又密切聯(lián)系的有機(jī)整體,綜合性數(shù)學(xué)問題、發(fā)散性數(shù)學(xué)問題等,是其內(nèi)在特性的重要表現(xiàn).因此,教師應(yīng)將開放性問題案例教學(xué)作為學(xué)生創(chuàng)新思維的重要抓手,設(shè)置具有一題多解、一題多問、一題多變的開放性問題案例,讓學(xué)生在“渠道各異”的思維分析活動中,創(chuàng)新求異能力得到顯著鍛煉和提升.

圖2問題:如圖2,ABC中,點(diǎn)O為AC邊上的一個動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點(diǎn)F,交∠ACB內(nèi)角平分線CE于E.求證:EO=FO.

第4篇:平行四邊形的認(rèn)識教學(xué)案例范文

1 直接導(dǎo)入法

直接導(dǎo)入法是教師教學(xué)中常用的導(dǎo)入方法,教師在直接導(dǎo)入時,一般從學(xué)生尚未知曉的內(nèi)容入手進(jìn)行,但有些新授課的內(nèi)容也可以依據(jù)學(xué)生已學(xué)知識的基礎(chǔ)或?qū)W生的生活經(jīng)驗(yàn)直接導(dǎo)入。教師通過以舊引新,直接點(diǎn)明主題,導(dǎo)入將要學(xué)習(xí)的內(nèi)容上,明確本節(jié)課所要講授的主要內(nèi)容,所要解決的主要問題。教學(xué)案例:《二次函數(shù)》復(fù)習(xí)課的導(dǎo)入。二次函數(shù)是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要數(shù)學(xué)模型,同時也是某些單變量最優(yōu)化問題的數(shù)學(xué)模型。二次函數(shù)的圖像----拋物線,也是人們最為熟悉的曲線之一,入噴泉的水流、標(biāo)槍的投擲等能形成拋物線路徑。同時拋物線形狀在建筑上也有著廣泛的應(yīng)用,如拋物線形拱橋、隧道等。二次函數(shù)的知識貫穿于人們的生活之中,這正說明了它的重要性,因此我們一定要學(xué)好它、用好它,從本節(jié)課開始我們將來對二次函數(shù)的有關(guān)知識進(jìn)行梳理,加深鞏固,以便讓大家正真地學(xué)好、用好有關(guān)知識。

2 創(chuàng)設(shè)“具體問題”導(dǎo)入法

一個恰當(dāng)而耐人尋味的情境可激起學(xué)生思維的浪花,因此,精心設(shè)計(jì)問題可以吸引學(xué)生的注意力,喚起求知興趣。教師為學(xué)生設(shè)置的問題情境一般是需要學(xué)生在教師的引導(dǎo)下通過努力可以得到解決的情境。教學(xué)案例《弧長》的導(dǎo)入:《圓》中《弧長》一節(jié),重點(diǎn)是弧長公式的推導(dǎo)及應(yīng)用它解決有關(guān)弧長的計(jì)算和證明問題,教師在上課時首先用投影儀放映了一張學(xué)校操場的圖片,配合圖片導(dǎo)入新授課。師:“同學(xué)們,這是我們學(xué)校的操場,操場跑道是400米,它由兩個100米直道,兩個100米彎道組成。我給大家提出的問題是,如果你是一位設(shè)計(jì)師,現(xiàn)在由你來設(shè)計(jì)操場的標(biāo)準(zhǔn)跑道,你該如何設(shè)計(jì)呢?(停頓片刻)”“我們今天學(xué)習(xí)的弧長可以幫你設(shè)計(jì)出你想要的圖紙。”(板書:弧長)“弧長”公式的推導(dǎo)和計(jì)算是初中幾何中的一個難點(diǎn),教師在導(dǎo)入時從學(xué)生熟悉的操場跑道入手,激起學(xué)生疑念,為新授課的學(xué)習(xí)埋下伏筆,吊起胃口,學(xué)生的求知欲和探求興趣被激發(fā),有利于更好地學(xué)習(xí)新知。

3 類比導(dǎo)入法

類比導(dǎo)入是通過比較兩個或兩類數(shù)學(xué)對象的共同屬性來引入新課的方法。由于初中數(shù)學(xué)內(nèi)容具有較強(qiáng)的系統(tǒng)性,前后知識銜接緊密,所以由類比導(dǎo)入新課在初中數(shù)學(xué)教學(xué)中比較常見。教學(xué)案例《相似三角形》的導(dǎo)入。在講相似三角形性質(zhì)時,可以從全等三角形性質(zhì)為例類比。全等三角形的對應(yīng)邊、對應(yīng)角、對應(yīng)線段、對應(yīng)周長等相等。那么相似三角形這幾組量怎么樣?這種方法使學(xué)生能從類推中促進(jìn)知識的遷移,發(fā)現(xiàn)新知識。

4 動手實(shí)踐導(dǎo)入法

在教學(xué)中放手讓學(xué)生通過自己操作、實(shí)驗(yàn)去發(fā)現(xiàn)規(guī)律,主動認(rèn)識。使抽象的數(shù)學(xué)內(nèi)容具體化、形象化,這樣學(xué)生對此印象會更深,掌握知識會更牢。教學(xué)案例《梯形》的導(dǎo)入。師:同學(xué)們拿出準(zhǔn)備好的平行四邊形紙片和剪刀,只剪一刀保證留下來的紙片還是四邊形嗎?(學(xué)生動手)師:大家都剪出什么圖形了?生1:我剪出的還是平行四邊形。生2:我剪出的是梯形。……師:看起來大家剪出的圖形是兩種:平行四邊形和梯形。梯形的物體也存在于我們的生活中,如你們體育課上用的跳箱,堤壩的橫截面等。梯形有什么特點(diǎn)呢?我們今天就來探討這一問題。這種導(dǎo)入新課的好處在于培養(yǎng)學(xué)生動手動腦的習(xí)慣,克服懶惰思想,充分調(diào)動學(xué)生多種感官參與實(shí)踐活動,有利于誘發(fā)學(xué)習(xí)數(shù)學(xué)的濃厚興趣,讓他們自己發(fā)現(xiàn)問題,回答和解決他們自己的問題,使他們成為知識的發(fā)現(xiàn)者,從而培養(yǎng)他們的創(chuàng)造性思維能力。

5 “溫故知新”導(dǎo)入法

數(shù)學(xué)知識之間有著密切的聯(lián)系,表現(xiàn)出極強(qiáng)的系統(tǒng)性。溫故知新的教學(xué)方法,可將新舊知識有機(jī)結(jié)合起來,使學(xué)生從舊知識的復(fù)習(xí)中獲得新知識。根據(jù)知識之間的邏輯關(guān)系,找準(zhǔn)新舊知識的連接點(diǎn)、溝通內(nèi)在聯(lián)系。以舊引新或溫故知新。例如:在教學(xué)”多項(xiàng)式除以單項(xiàng)式”時,我就先出示了一組多項(xiàng)式乘單項(xiàng)式,要學(xué)生做題并要求說出計(jì)算方法,然后把上題中的乘號改成除號,問學(xué)生現(xiàn)在屬于什么算式,學(xué)生回答:多項(xiàng)式除以單項(xiàng)式。師:你們能借用多項(xiàng)式乘單項(xiàng)式的方法去試算一下今天要學(xué)的知識嗎?于是,一石激起千層浪,學(xué)生均躍躍欲試,成功的用學(xué)過的乘法知識解決了當(dāng)天的除法知識,并且在解決過程中體會到了成功的快樂。

6 聯(lián)系生活導(dǎo)入法

第5篇:平行四邊形的認(rèn)識教學(xué)案例范文

關(guān)鍵詞:課堂教學(xué);合作學(xué)習(xí);新課程理念

傳統(tǒng)的教學(xué),往往被教師認(rèn)為是“講課”,就是把書本知識傳遞給學(xué)生,教學(xué)成了單向的信息傳遞,把教師的教作為主要的主動活動,把學(xué)生的學(xué)作為被動的活動來看待。這種教學(xué)忽視了教學(xué)是學(xué)生獲得發(fā)展的過程,只關(guān)心達(dá)成教育目的的手段,而忽視了對目的的本身及教育本質(zhì)的追問,割裂了教育目的與手段之間的聯(lián)系。新課程強(qiáng)調(diào)教師應(yīng)積極把自己定位于學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者與合作者這一角色上,課堂上應(yīng)積極引導(dǎo)學(xué)生進(jìn)行自主的、探究的、合作的學(xué)習(xí)。

在新課程理念下,學(xué)生才是學(xué)習(xí)的主體,教師的作用在于引領(lǐng),當(dāng)向?qū)?,逢山開路,遇水搭橋。隨著新課程改革的逐步深入,課堂教學(xué)的組織形式正在悄然發(fā)生變化。合作學(xué)習(xí)成了新課程課堂教學(xué)中運(yùn)用得最多的一種學(xué)習(xí)方式。在教學(xué)中,教師要充分調(diào)動學(xué)生的自覺性,發(fā)揮自主性,打開知識之門,讓他們自己走進(jìn)去。

蘇霍姆林斯基說:“在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者、探索者。在兒童的精神世界里這種需要特別強(qiáng)烈?!倍行У暮献鲗W(xué)習(xí),恰恰給學(xué)生提供了這樣一個平臺,把學(xué)習(xí)的主動權(quán)還給學(xué)生,給學(xué)生有個性的學(xué)習(xí)提供空間,更給生生互動、師生互動提供了一個有效的平臺。讓教師從高高的講臺上走下來,走向?qū)W生;讓學(xué)生從坐著被動地聽課,接受知識,轉(zhuǎn)變到主動參與課堂教學(xué),發(fā)揮學(xué)生的主體意識和創(chuàng)造性,使學(xué)生真正成為學(xué)習(xí)的主人!

那么,怎樣才能組織好課堂合作學(xué)習(xí)呢?在具體的課堂教學(xué)中,很多教師雖然讓學(xué)生組成小組進(jìn)行合作學(xué)習(xí),展開討論,但是在討論中卻不指導(dǎo)學(xué)生互相交流,也不監(jiān)控學(xué)生在小組內(nèi)的交往活動,學(xué)生對討論過程困惑茫然,不知所措,導(dǎo)致合作學(xué)習(xí)流于形式,效率不高,出現(xiàn)了走過場的現(xiàn)象。如何進(jìn)行有效的合作學(xué)習(xí),提高學(xué)生的思考和討論的質(zhì)量應(yīng)該引起廣大一線教師的重視。

在一些西方課堂上,合作學(xué)習(xí)是一種常見的教學(xué)方式。在培養(yǎng)學(xué)生的語言能力方面,鼓勵他們進(jìn)行有效的對話起著很重要的作用。為了進(jìn)行口語和寫作練習(xí),很多教師習(xí)慣把學(xué)生安排成一對對的“學(xué)習(xí)伙伴”,讓他們自由交流。但是為了討論的有效性,必須重視教師的作用。教師在開始讓學(xué)生進(jìn)行合作學(xué)習(xí)之前必須清楚地認(rèn)識到以下幾個方面:通過合作學(xué)習(xí)活動,學(xué)生應(yīng)當(dāng)取得怎樣的學(xué)習(xí)成果?需要同伴怎樣的幫助和支持?應(yīng)給予同伴怎樣的支持?這些都需要教師事先說明,必要時還可以提供案例,讓學(xué)生清楚討論的步驟,從而保證合作學(xué)習(xí)的有效性。

然而,教師在學(xué)生的討論中必須努力做好以下注意事項(xiàng):

一、教師要迅速下一些“指令”以集中學(xué)生的注意力

教師的一些快速指令有利于集中學(xué)生的注意力,并且給他們創(chuàng)造很多的交流機(jī)會,如“當(dāng)你有疑問時向你的組員求助――”“給你們五分鐘的時間――”等。

二、教師要給學(xué)生必要的示范

學(xué)生的注意力畢竟是短暫的,他們的談話很容易造成離題現(xiàn)象。尤其是剛開始的幾周,要給學(xué)生示范如何進(jìn)行討論,如何回答伙伴提出的問題。

三、要幫助學(xué)生表達(dá)自己的想法

有時學(xué)生理解了教學(xué)內(nèi)容,但是不一定能夠表達(dá)自己的想法,所以教師應(yīng)該幫助他們進(jìn)行更有效的討論。為了做到這一點(diǎn)可以用問題來引導(dǎo)所有的學(xué)生,如“你們還記得要互相幫助嗎?”“你應(yīng)該問什么樣的問題?”不斷提醒他們合作學(xué)習(xí)的規(guī)則。

下面這個初二數(shù)學(xué)課堂教學(xué)案例就是一個很好的、正面的例子。

“5.5平行四邊形的判定(2)”教學(xué)片段

師:(在學(xué)生作了充分的預(yù)習(xí)之后)今天請同學(xué)們采取小組合作的形式,討論除了我們已經(jīng)掌握的兩種判定之外,是否還可以總結(jié)出可以判定平行四邊形的方法,看看哪組學(xué)得更好!――提出要求,給出指令!

(學(xué)生按教師的要求開展合作學(xué)習(xí),教師深入到各組巡視。在一個小組發(fā)現(xiàn)學(xué)生正在按不同分工各自尋找論證、畫圖,就適時鼓勵他們,并告訴他們列好后要工整地寫出來,以備交流時展示出來)

(教師又來到一個小組,發(fā)現(xiàn)兩個學(xué)生沒有和大家一起討論)

師:你們?yōu)槭裁床粎⑴c討論呢?有什么困難?――指出問題,給予指導(dǎo)幫助!

生:我們不知道還有其他的方法可以判定平行四邊形!

(教師指導(dǎo)這兩個學(xué)生去總結(jié)已學(xué)過的判定平行四邊形的定義與兩個判定定理,然后再根據(jù)平行四邊形的性質(zhì),去討論探索?。┄D―針對不同層次的學(xué)生,給予不同角度的指導(dǎo)!

(一會兒,教師來到另一個小組,發(fā)現(xiàn)學(xué)生只找了課本上的判定定理3)

師:你們在預(yù)習(xí)時知道了這個定理了嗎?

生:是的!但是我們找不出其他的,也不知怎么找?

師:你們可以模仿判定定理,如“一組對邊平行,另外一組對邊相等的四邊形是平行四邊形”,然后再作出證明或舉反例!――對于覺得無從下手的學(xué)生,給予具體的示范指導(dǎo)!

(教師又來到一個小組,發(fā)現(xiàn)兩個爭論的面紅耳赤)

師:你們的意見有什么分歧?

生1:我覺得“一組對邊平行,另外一組對邊相等的四邊形是平行四邊形”是正確的,因?yàn)槲耶嬃撕芏喾线@些條件的圖形都是平行四邊形!

生2:我覺得“一組對邊平行,另外一組對邊相等的四邊形是平行四邊形”是錯誤的假命題,但我又說不出理由來說服他!

師:你們提出的這個問題很有價值,老師和你們一起討論好嗎?

(師生共同討論)

(教師又讓這組的同學(xué)提出這個問題在全班交流。最后得出結(jié)論。)――對于有價值對課題有正確的引導(dǎo)的討論話題要給予引導(dǎo)、深化,以達(dá)到討論的目的!

在這個案例中,教師的活動雖然不多,但是卻在小組合作學(xué)習(xí)中發(fā)揮了組織者、引導(dǎo)者、參與者的作用。

1.規(guī)范了參與合作學(xué)習(xí)的學(xué)生的行為,對學(xué)生的不積極或錯誤行為進(jìn)行監(jiān)督指導(dǎo),提出明確的要求,確保合作學(xué)習(xí)能夠順利開展,并且不流于形式。

2.幫助學(xué)習(xí)有困難的學(xué)生排除障礙。在合作學(xué)習(xí)中,時常會出現(xiàn)因?yàn)樗季S受阻不能深入的情況,這時需要教師及時的點(diǎn)撥。在案例中,教師發(fā)現(xiàn)兩個學(xué)生存在思維障礙后,立即給這兩位學(xué)生進(jìn)行點(diǎn)撥,使他們能夠順利地與其他學(xué)生進(jìn)行交流。

3.及時發(fā)現(xiàn)火花,并給予鼓勵。合作交流的過程是學(xué)生間思維碰撞的過程,時常會有思維的火花閃現(xiàn)。這種火花可能是一個富有創(chuàng)意的想法,也可能是一句富有哲理的話。教師要在傾聽中努力去感受和尋找。在以上課例中,教師發(fā)現(xiàn)一個小組正在按不同分工各自尋找論證、畫圖,就適時鼓勵他們,并告訴他們列好后要工整地寫出來,以備交流時展示出來;在另一組發(fā)現(xiàn)學(xué)生對某學(xué)生提出的命題有了爭議,提出了一個很有價值的問題,于是傾聽他們的不同意見,并鼓勵這組學(xué)生在匯報(bào)時提出這個問題,全班討論,這都是在發(fā)現(xiàn)思維的火花。

4.要加以適當(dāng)?shù)囊龑?dǎo)深化。在開始采用合作學(xué)習(xí)這種形式時,小組的交流和討論往往容易出現(xiàn)淺層次、表面化。

從教育專家到普通一線的理論和實(shí)踐都表明,在學(xué)生合作學(xué)習(xí)中,教師要進(jìn)行有效的組織,教師不應(yīng)是旁觀者,更不要做局外人。教師在學(xué)生合作學(xué)習(xí)中應(yīng)該是組織者、引導(dǎo)者、參與者。教師必須深入到每一個小組,認(rèn)真傾聽大家的發(fā)言,適時地組織小組成員進(jìn)行交流。

參考文獻(xiàn):

[1]胡明根.影響教師的100個經(jīng)典教育案例.中國傳媒大學(xué)出版社,2004-01.

第6篇:平行四邊形的認(rèn)識教學(xué)案例范文

關(guān)鍵詞:理解 數(shù)學(xué)理解 數(shù)學(xué)概念

數(shù)學(xué)概念教學(xué)的根本任務(wù)是正確地揭示概念的內(nèi)涵和外延,使學(xué)生深刻理解并系統(tǒng)地掌握概念、靈活地運(yùn)用概念。為此教學(xué)中一般側(cè)重以下幾方面:重視概念的引入、抓住本質(zhì)講清概念、鞏固深化和運(yùn)用概念。于是莫名其的情境、死記硬背、反復(fù)操練成了教學(xué)中的常見的事。事實(shí)上,學(xué)生只有真正理解了概念才能正確、靈活地運(yùn)用其解決問題。所以在數(shù)學(xué)概念教學(xué)中“理解”成為關(guān)鍵所在。

一、何為“數(shù)學(xué)理解”

數(shù)學(xué)需要理解。從教學(xué)實(shí)踐和現(xiàn)代教育觀念看,即使對于像歷史、文學(xué)這樣記憶多于理解的學(xué)科,理解也是必不可少的,何況對重在思維、理解、頓悟的數(shù)學(xué)學(xué)科。學(xué)數(shù)學(xué)需要理解,教數(shù)學(xué)更需要理解。然而在現(xiàn)實(shí)的數(shù)學(xué)教學(xué)中,“照本宣科”、 “按規(guī)定辦”的事卻屢見不鮮。

什么是“數(shù)學(xué)理解”,日常的“理解”:我們通常學(xué)一個東西,說“懂了”、“明白了”即“理解”了,是什么意思?“詞典”日:理解就是“懂”,而“懂”呢?是知道,再查知道,則又是懂或理解。因此,終無結(jié)果。與我們?nèi)粘W(xué)習(xí)中“數(shù)學(xué)理解”含義最切近的,是皮亞杰和格拉斯菲爾德的建構(gòu)主義學(xué)說的解釋。

數(shù)學(xué)理解的含義。建構(gòu)學(xué)說稱:“我們通過自己的經(jīng)驗(yàn)構(gòu)造自己的理解……是我們自己的注意、選擇與建構(gòu),為理解現(xiàn)實(shí)提供了構(gòu)造?!边@里的“經(jīng)驗(yàn)”、“注意”就是我們已掌握的數(shù)學(xué)雙基或三基(基礎(chǔ)知識、基本技能和基本的數(shù)學(xué)思想方法),“現(xiàn)實(shí)”就是要學(xué)習(xí)的新的數(shù)學(xué)對象,而選擇、建構(gòu)、構(gòu)造,就是理解(的過程、舉措、結(jié)果)。在這里,“理解”既是聯(lián)系未知與已知間的紐帶或橋梁,又是這橋梁的建造過程(以下是數(shù)學(xué)理解結(jié)構(gòu)模型圖)。

由此可見,“理解”同現(xiàn)有認(rèn)知結(jié)構(gòu)有關(guān),是它的一個功能,而理解的過程,就是建構(gòu)過程,包括對信息攝取、加工和納入(已有結(jié)構(gòu)),怎樣加工呢? 按皮亞杰(J.Piaget)發(fā)生認(rèn)識論學(xué)說,就是主體通過圖式(Scheme,格局,原認(rèn)知結(jié)構(gòu))對外來信息進(jìn)行同化、順應(yīng)及相互平衡。對數(shù)學(xué)來說,就是將新的對象通過抽象、概括、符號化、對比、必要的推理等,化歸到已知或已解的問題網(wǎng)絡(luò).這個加工(即C)的過程,不僅需要B提供工具、方式、標(biāo)準(zhǔn),而且還要有思想、觀念(相當(dāng)于構(gòu)想或藍(lán)圖)的參與。

二、基于哲學(xué)觀點(diǎn)的提高學(xué)生“數(shù)學(xué)理解”能力的案例

作為教師該如何通過課堂教學(xué)完善學(xué)生的數(shù)學(xué)理解?以下是筆者在數(shù)學(xué)概念教學(xué)中提高學(xué)生數(shù)學(xué)理解能力的兩個案例。

1、將“質(zhì)量互變觀”運(yùn)用于概念引入教學(xué)。

辯證唯物主義告訴我們:量變是質(zhì)變的前提和條件,只有當(dāng)量的積累達(dá)到一定程度才能引起質(zhì)變。例如:數(shù)列極限的定義,是高中數(shù)學(xué)教學(xué)的難點(diǎn),對學(xué)生來說,“極限”或許是一個新的概念,但對極限思想?yún)s未必生疏,因?yàn)樵谝郧耙恍﹥?nèi)容的學(xué)習(xí)中,曾多次運(yùn)用它解決過數(shù)學(xué)問題,對這些問題的簡單回顧,有利于調(diào)動知識儲存,使學(xué)生產(chǎn)生一種“似曾相識燕歸來”的親切感。例如,我國古代數(shù)學(xué)家劉徽為了定義和計(jì)算圓的周長采用了“割圓術(shù)”,他首先作圓的內(nèi)接正六邊形,再作圓的內(nèi)接正十二邊形,內(nèi)接正二十四邊形,內(nèi)接正四十八邊形,等等。當(dāng)邊數(shù)無限增加時,這一串圓的內(nèi)接正多邊形的周長無限接近于一個常數(shù),于是理所當(dāng)然地認(rèn)為這個常數(shù)就是該圓的周長。從而實(shí)現(xiàn)了這一極限變化過程中飛躍式的“終結(jié)”。

2、將“變化發(fā)展觀”運(yùn)用于概念發(fā)展教學(xué)。

高中教材選修1-2第四章第一節(jié)是講授數(shù)的概念的發(fā)展,高中學(xué)生學(xué)到復(fù)數(shù)這一章時,數(shù)的概念的擴(kuò)張?jiān)谥袑W(xué)階段到此為止了,教材在這一節(jié)里簡單扼要對已經(jīng)學(xué)過的數(shù)集在生產(chǎn)與科學(xué)發(fā)展的需要逐步擴(kuò)充的過程作了概括,數(shù)的概念的發(fā)展是,其本身與人類社會的發(fā)展一樣是一部波瀾壯闊的發(fā)展史,在結(jié)束語中,我作了如下設(shè)計(jì)與講解:數(shù)的概念的發(fā)展大致按如下順序:

正分?jǐn)?shù) 負(fù)有理數(shù)與零 無理數(shù)虛數(shù)

自然數(shù) 正有理數(shù) 有理數(shù) 實(shí)數(shù) 復(fù)數(shù)

從數(shù)的概念的發(fā)展史來觀察,體現(xiàn)了人類的社會實(shí)踐是一個由低級到高級不斷變化發(fā)展的過程,這就決定了人的認(rèn)識也是一個如此的發(fā)展過程,數(shù)的概念產(chǎn)生于實(shí)際需要,在實(shí)踐中得到發(fā)展,數(shù)集的每一次擴(kuò)充,都是由于舊數(shù)集與解決具體問題間的矛盾而引起的,舊的矛盾解決了,新的矛盾又產(chǎn)生了,最終將它推向一個新的階段,數(shù)集擴(kuò)充到復(fù)數(shù)集是否還可以再繼續(xù)擴(kuò)充呢?答案是肯定的,1843年就有四元數(shù)(超復(fù)數(shù))出現(xiàn),愛因斯坦的相對論已經(jīng)證明了時間與空間是互相互聯(lián),不能彼此分離的。這種統(tǒng)一的四維世界,是可以用四元數(shù)把它表示出來。這說明了人們對數(shù)的認(rèn)識,永遠(yuǎn)沒有終結(jié)。

三、強(qiáng)化數(shù)學(xué)概念正確理解的方法分析

筆者以數(shù)學(xué)概念的展開過程為根據(jù),去研究數(shù)學(xué)理解的教學(xué)流程設(shè)計(jì).根據(jù)不同特點(diǎn)的數(shù)學(xué)概念所對應(yīng)的理解過程和方式之間的差別,通過對數(shù)學(xué)概念的系統(tǒng)分析,來達(dá)到展示學(xué)生不同理解過程的目的。

1、敘實(shí)式數(shù)學(xué)概念的定義及其理解分析。

敘實(shí)式數(shù)學(xué)概念一般指的是那些原始概念,不定義的概念,或者是那些很難用嚴(yán)格定義確切描述內(nèi)涵或外延的概念。這類概念包括平面、直線等原始概念,包括算法、法則等不定義概念,還包括數(shù)、代數(shù)式等外延定義概念等.此類概念所共有的一個特點(diǎn)是無法直接確定其內(nèi)涵或外延,或者其定義當(dāng)中存在著較容易造成多方面理解的非數(shù)學(xué)詞匯。 敘實(shí)式數(shù)學(xué)概念的認(rèn)知表征是從人們所認(rèn)識世界的現(xiàn)實(shí)背景中抽象出來的,與實(shí)際背景有一定的差異性,所以其現(xiàn)實(shí)背景的豐富性與表征的單一性之間也就會產(chǎn)生較大的矛盾。

比如在直線的概念理解中,對于直線所具有的無限長的特點(diǎn)來說,所要研究的是關(guān)于直線的長度問題.一張紙的折痕、課桌的邊、筆直的鐵軌等各式各樣的實(shí)物中的線雖然長短不一,但可以要多長就有多長,這種性質(zhì)說明直線具有一定的可延伸性,從而反應(yīng)出直線具有無限長的性質(zhì).另外,對于直線的不計(jì)粗細(xì)和曲直的特征,也有豐富的例子與之對應(yīng).這些反映不同性質(zhì)的例子的總和所對應(yīng)的是一個完整的關(guān)于直線概念本質(zhì)特征.

敘實(shí)式數(shù)學(xué)概念的理解方式就是通過敘述其現(xiàn)實(shí)背景或其外延來理解此類數(shù)學(xué)概念的理解方法,可以解決理解此類概念所面臨的外延不清的問題,即如何引導(dǎo)學(xué)生理解這些概念的描述特征與現(xiàn)實(shí)形態(tài)多樣性特征之間的關(guān)系.引導(dǎo)學(xué)生理解此類概念時,需要借助于這類概念的眾多的外延中找出不同對象的差異,并通過差異比較來形成對概念特征的理解。利用現(xiàn)實(shí)中的大量豐富的實(shí)物去促進(jìn)學(xué)生理解那些不能十分確切表述的數(shù)學(xué)概念,使學(xué)生對數(shù)學(xué)概念由大量豐富的感性認(rèn)識逐漸上升到完整的理性認(rèn)識。

2、推理式數(shù)學(xué)概念的定義及其理解分析。

推理式數(shù)學(xué)概念是指能夠?qū)Ω拍钆c相關(guān)概念的邏輯關(guān)系本質(zhì)的表述的數(shù)學(xué)概念。此類概念的特點(diǎn)為:前有因,后有果,同層有聯(lián)系.“前有因”指的是它們是在一些基本概念的基礎(chǔ)上產(chǎn)生的;“后有果”指的是它還能推出或定義出一些概念;“同層有聯(lián)系”指的是與它所并列于同一個邏輯層次上的其它概念有著一定的邏輯相關(guān)性。所以推理式數(shù)學(xué)概念的認(rèn)知表征是以邏輯關(guān)系確定下來的網(wǎng)絡(luò)式為特點(diǎn)的。

以平行四邊形概念為例,平行四邊形與四邊形間存在著一定的邏輯關(guān)系。四邊形的概念是平行四邊形的立腳點(diǎn),在平行四邊形的基礎(chǔ)上還能定義一些特殊的平行四邊形,如長方形、菱形等。梯形與平行四邊形構(gòu)成同層概念,這些概念形成了一個相關(guān)的邏輯體系,理解這些概念必須在該體系中完成。

推理式數(shù)學(xué)概念的理解方式是利用數(shù)學(xué)概念網(wǎng)絡(luò)中概念之間存在著的邏輯關(guān)系,以數(shù)學(xué)概念的邏輯基礎(chǔ)作為出發(fā)點(diǎn),根據(jù)概念的邏輯關(guān)系去理解新概念的全部內(nèi)涵和外延.使學(xué)生構(gòu)建出完整的數(shù)學(xué)概念認(rèn)知結(jié)構(gòu),達(dá)到理解的目的.借一句古詩來形容,即為“隨風(fēng)潛入夜,潤物細(xì)無聲”。將邏輯方法“隨著”它們的這三個特點(diǎn)“入”數(shù)學(xué)概念之中,用一定的邏輯方法去“細(xì)無聲”地與它們相結(jié)合,引導(dǎo)學(xué)生完成理解數(shù)學(xué)概念的整個邏輯過程。

3、變化式數(shù)學(xué)概念的定義及其理解分析。

變化式數(shù)學(xué)概念包括以原始概念為基礎(chǔ)定義的,包括那些借助于一定的字母與符號等表述,經(jīng)過嚴(yán)格的邏輯提煉而形成的抽象表述的數(shù)學(xué)概念。其特點(diǎn)為經(jīng)過逐級抽象后,在其應(yīng)用時很難看出原形.這類數(shù)學(xué)概念的認(rèn)知表征擁有著千變?nèi)f化的形式,學(xué)生所需認(rèn)知的正是通過對各種形式的演變的不斷總結(jié)而達(dá)到理解目的的。

在初一下學(xué)期的數(shù)學(xué)課程中,加入了有關(guān)“函數(shù)”的內(nèi)容,但其教學(xué)目的主要還是讓學(xué)生理解“函數(shù)”所包含的“變量”“自變量”及“因變量”這三個數(shù)學(xué)概念.以這三個數(shù)學(xué)概念為例,它們是以某一個變化過程來定義的,它們擁有很多種變化的過程,但“萬變不離其宗”.這個“宗”就是變量的概念,其中“萬變”所包含的是可以構(gòu)建出有關(guān)“變量”的概念的相關(guān)的每個變化過程。

變化式數(shù)學(xué)概念的理解方式是針對其內(nèi)涵與外延的多樣性與其表述的穩(wěn)定性之間的矛盾,通過“取之于概念,用之于變化”的過程,解決概念表述中,因不確定因素所導(dǎo)致的學(xué)生無法直接通過邏輯分析獲得觀念的困難,引導(dǎo)學(xué)生從這些數(shù)學(xué)概念不變的文字中悟出其變化的特點(diǎn),最終使學(xué)生達(dá)到徹底地理解數(shù)學(xué)概念的目的。

參考文獻(xiàn):

第7篇:平行四邊形的認(rèn)識教學(xué)案例范文

一、悉心挖掘

1.利用教材資源,挖掘轉(zhuǎn)化思想。轉(zhuǎn)化思想是前人在探索數(shù)學(xué)真理的過程中積累起來的,但教材中的知識并不一定是探索過程的真實(shí)記載,所以小學(xué)數(shù)學(xué)教材往往會掩蓋了蘊(yùn)含的思想,沒有明確地揭示出來。小學(xué)數(shù)學(xué)教材“空間與圖形”中蘊(yùn)含的轉(zhuǎn)化思想無處不在,在教學(xué)中,應(yīng)對教本中的素材進(jìn)行深入分析和研究,不僅把握其結(jié)構(gòu)體系和地位作用,還要從知識中尋找方法,進(jìn)而提煉轉(zhuǎn)化思想。挖掘出教材中運(yùn)用轉(zhuǎn)化思想的內(nèi)容后,還需要教師精心設(shè)計(jì)、有意識地滲透,充分發(fā)揮素材的作用,這樣才能達(dá)到良好的教學(xué)效果。

2.提取生活素材,滲透轉(zhuǎn)化思想?!稑?biāo)準(zhǔn)》倡導(dǎo)數(shù)學(xué)教學(xué)要密切聯(lián)系學(xué)生的生活實(shí)際,從現(xiàn)實(shí)生活中提取許多數(shù)學(xué)學(xué)習(xí)的素材,為滲透轉(zhuǎn)化思想服務(wù)。因此,課堂教學(xué)中要充分利用生活中有價值的素材來滲透轉(zhuǎn)化思想,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和需要。

二、精選方法

在小學(xué)階段,轉(zhuǎn)化思想的運(yùn)用應(yīng)主要以形式多樣、生動有趣的圖表或動態(tài)演示的畫面形式,使之直觀化、形象化、具體化,以適應(yīng)小學(xué)生認(rèn)知發(fā)展的特點(diǎn)。多媒體課件是呈現(xiàn)直觀教學(xué)內(nèi)容和培養(yǎng)學(xué)生空間觀念的工具,運(yùn)用多媒體可以把靜態(tài)、枯燥的教學(xué)內(nèi)容轉(zhuǎn)化為動態(tài)、豐富的畫面,創(chuàng)造出真實(shí)情境下的學(xué)習(xí)環(huán)境,把多媒體運(yùn)用到“空間與圖形”內(nèi)容的課堂教學(xué)中,是一種有效的體現(xiàn)轉(zhuǎn)化思想的教學(xué)手段。例如學(xué)習(xí)《圓的面積》,教師在備課時,精心制作多媒體課件,在課堂教學(xué)中,展示把圓平均分成16份或32份,轉(zhuǎn)化成平行四邊形或長方形,讓學(xué)生親身經(jīng)歷圓的動態(tài)轉(zhuǎn)化過程,充分理解和掌握轉(zhuǎn)化思想,主動地獲取新知識。

三、積極運(yùn)用

1.在知識形成過程中運(yùn)用。如教學(xué)求不規(guī)則圖形的面積時,學(xué)生發(fā)現(xiàn)用數(shù)方格的方法求不規(guī)則圖形的面積有困難,思路受到阻礙,教師及時啟發(fā):能否把不規(guī)則的圖形轉(zhuǎn)化成以前學(xué)過的規(guī)則圖形來求其面積?經(jīng)過探索,學(xué)生用剪拼、割補(bǔ)的辦法,將不規(guī)則的圖形轉(zhuǎn)化成長方形或正方形,而后利用長方形或正方形的面積公式得出原來圖形的面積。在新知識形成發(fā)展過程中,教師要及時把握運(yùn)用轉(zhuǎn)化思想的契機(jī),引導(dǎo)學(xué)生的思維方向,激發(fā)思維活力,讓學(xué)生領(lǐng)悟蘊(yùn)含于知識形成發(fā)展中的轉(zhuǎn)化思想。

2.在動手操作中運(yùn)用。根據(jù)小學(xué)生的認(rèn)知發(fā)展規(guī)律,動手操作是學(xué)生學(xué)習(xí)數(shù)學(xué)知識和參與數(shù)學(xué)活動的重要手段。而與其它教學(xué)內(nèi)容相比,“空間與圖形”的內(nèi)容具有較強(qiáng)的抽象性和可操作性,要著力讓學(xué)生體驗(yàn)空間圖形與現(xiàn)實(shí)生活的聯(lián)系。因此,適當(dāng)?shù)牟僮骰顒釉诨鈹?shù)學(xué)學(xué)科特點(diǎn)與兒童思維特點(diǎn)之間矛盾的同時,突出了學(xué)生參與學(xué)習(xí)的主體性,便于全班交流、集體互動,也大大增加了獲得成功體驗(yàn)的機(jī)會。學(xué)生通過動手操作,在擺一擺、剪一剪、拼一拼、量一量、畫一畫、折一折的活動中,有意識地運(yùn)用數(shù)學(xué)轉(zhuǎn)化思想,使學(xué)生更形象、更深刻地理解知識,感悟轉(zhuǎn)化思想,從而有利于學(xué)習(xí)新知識,解決新問題。在動手操作時,不能只停留在為學(xué)習(xí)知識而操作,更重要的是要讓學(xué)生知道這樣操作的原因,也就是要領(lǐng)悟其中的數(shù)學(xué)思想。

3.在問題解決中運(yùn)用。學(xué)生在小學(xué)階段經(jīng)過幾年的學(xué)習(xí),已對轉(zhuǎn)化思想形成一定的認(rèn)識,但卻不能停留于表面,只有進(jìn)一步運(yùn)用,才能內(nèi)化為學(xué)生自己的知識,形成數(shù)學(xué)思想。而“轉(zhuǎn)化”這一思想方法在小學(xué)數(shù)學(xué)高年級的學(xué)習(xí)過程中有著廣泛的應(yīng)用,如在學(xué)習(xí)平行四邊形的面積時,利用已學(xué)過的長方形面積計(jì)算方法,將平行四邊形轉(zhuǎn)化為長方形來求面積;而在學(xué)習(xí)三角形的面積時,轉(zhuǎn)化思想的應(yīng)用可以更加靈活,將三角形轉(zhuǎn)化成平行四邊形來求面積,從而加強(qiáng)知識之間的內(nèi)在聯(lián)系,將新知內(nèi)化為自己的知識。

四、加強(qiáng)訓(xùn)練

1.適時點(diǎn)明。在課堂教學(xué)中,教師應(yīng)該在適當(dāng)?shù)臅r機(jī)點(diǎn)明轉(zhuǎn)化思想的名稱和作用,以便于在以后的教學(xué)中運(yùn)用。例如在四年級下冊學(xué)習(xí)三角形內(nèi)角和,將三角形的三個內(nèi)角轉(zhuǎn)化成一個平角,應(yīng)在課堂總結(jié)時告訴學(xué)生:解決問題可以換一種方法和角度去思考,這種在舊知識的基礎(chǔ)上學(xué)習(xí)新知識,建立起新舊知識之間的內(nèi)在聯(lián)系,由新知轉(zhuǎn)化為舊知的方法就是轉(zhuǎn)化思想,轉(zhuǎn)化思想是在小學(xué)數(shù)學(xué)的學(xué)習(xí)中經(jīng)常使用的一種重要思想,在以后的學(xué)習(xí)中還會用到。

第8篇:平行四邊形的認(rèn)識教學(xué)案例范文

【關(guān)鍵詞】 數(shù)學(xué)課程;數(shù)學(xué)活動;學(xué)生主體;合作探究

1. 《數(shù)學(xué)課程標(biāo)準(zhǔn)》中的活動教學(xué)

數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),活動教學(xué)是從哲學(xué)的、人的生存方式的角度研究教學(xué)的一種新視角. 教育部規(guī)定學(xué)校數(shù)學(xué)教學(xué)改革的任務(wù)就是要讓課堂充滿生命活力. 活動教學(xué)體現(xiàn)了這一改革趨勢,它是對傳統(tǒng)教學(xué)的改革、完善和發(fā)展. 活動教學(xué)能充分體現(xiàn)學(xué)生的生命活力和豐富個性;有助于充分落實(shí)學(xué)生的主體地位;是促進(jìn)學(xué)生發(fā)展的重要方式.

《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》(以下簡稱《標(biāo)準(zhǔn)》)中指出:“學(xué)生是學(xué)習(xí)的主人. 教師是學(xué)生學(xué)習(xí)的合作者、引導(dǎo)者、參與者”. 簡單地說教學(xué)過程是師生互動、共同學(xué)習(xí)的交往過程,課程教學(xué)應(yīng)該是一種動態(tài)的、發(fā)展的、充滿個性的創(chuàng)造過程. 《標(biāo)準(zhǔn)》要求我們應(yīng)調(diào)動學(xué)生的學(xué)習(xí)數(shù)學(xué)的熱情,讓受教育者能夠充分體會數(shù)學(xué)知識和技能學(xué)習(xí)的樂趣. 對數(shù)學(xué)的評價不僅要關(guān)注學(xué)生的學(xué)習(xí)結(jié)果,更要關(guān)注他們的學(xué)習(xí)過程;要關(guān)注每名學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,要關(guān)注他們在數(shù)學(xué)活動中所表現(xiàn)出來的情感與態(tài)度. 這些都是《標(biāo)準(zhǔn)》中提出的評價內(nèi)容所強(qiáng)調(diào)的. 我們在數(shù)學(xué)教學(xué)中要關(guān)心的不僅僅是活動的結(jié)果,而且更要關(guān)心學(xué)生數(shù)學(xué)學(xué)習(xí)活動的過程,讓不同思維層次的學(xué)生去研究不同數(shù)學(xué)層次的問題,有目的地發(fā)展學(xué)生的思維能力,提高智力水平.

讓學(xué)生經(jīng)歷“使用各種數(shù)學(xué)語言和符號表達(dá)對學(xué)生來說是現(xiàn)實(shí)的問題,建立數(shù)學(xué)關(guān)系式,獲得合理的解答、了解并掌握相應(yīng)的數(shù)學(xué)知識與技能”. 另外,經(jīng)歷了用數(shù)學(xué)知識解決身邊問題的親身體驗(yàn),學(xué)生在親身實(shí)踐過程中一定感受到數(shù)學(xué)知識的有用性,這樣就會增強(qiáng)學(xué)生對數(shù)學(xué)的應(yīng)用意識. 學(xué)以致用也正是新的教育理念推崇的.

2. 對現(xiàn)行數(shù)學(xué)活動教學(xué)的再認(rèn)識

如果我們在教學(xué)中學(xué)生作為學(xué)習(xí)的主體地位不能夠落實(shí),學(xué)生活動的自主性、能動性不能夠得到充分的發(fā)揮,活動最終的本位價值就不能夠?qū)崿F(xiàn). 而且這種能動性、自主性應(yīng)該是思維上的,而不是行為上的. 比如這樣一個教學(xué)案例:

(師)同學(xué)們能畫一個60°角嗎?

(生)能.

(師)怎么畫?

(生)用量角器,三角板.

(師)好,那能不能畫一個75°的角呢?

(生)能.

(師)怎么畫 ?

(生)用量角器,三角板.

(師)我們用量角器可以畫一個75°角,那三角板怎么畫 呢?

(學(xué)生1)用兩個三角板,把一個45°的角和一個30°的角拼在一起就是75°角.

(師)用三角板還能畫哪些角呢?

(學(xué)生2)還能畫15°,30°,45°,60°,75°,90°,105°,…

(師)也就是15°倍數(shù)的角,如果是55°呢?

(生)用量角器.

(師)三角板能畫嗎?

(生)不能.

(師)三角板只能畫15°倍數(shù)的角. 你能畫一個角等于已知角嗎?

(生)能,用量角器,先量出已知角.

(師)好,請同學(xué)們自己操作,畫一個角等于已知角. 通過復(fù)習(xí)知道:0°到 180°的角都可以用量角器作出,特殊的角可以用三角板作出,還有其他方法嗎?

(生)不知道.

(師)今天就來學(xué)習(xí)用尺和圓規(guī)的尺規(guī)作圖.

這是一節(jié)公開課的引入,教師的問題反而阻礙了學(xué)生的積極性和主動性的發(fā)揮. 教師從60°這一特殊角入手,推進(jìn)到75°角,雖然不是特殊角,除量角器外,仍然可以由三角板作出. 進(jìn)而歸納出可以由三角板作出的角的特征. 上課老師精心設(shè)計(jì)這些問題的現(xiàn)象很容易看出,學(xué)生是被動應(yīng)付,根本談不上調(diào)動學(xué)生的主動性和積極性. 教師完全可以放手讓學(xué)生通過討論、實(shí)踐等活動得出這些結(jié)論:量角器可以作出0°到180°的角,三角板可以作出15°倍數(shù)的角. 在已有知識的基礎(chǔ)上,教師可以引出這堂課要講的主題:用尺規(guī)作圖方法作一個角等于已知角. 這樣學(xué)生有其思維的空間,在弘揚(yáng)個性的同時,鞏固舊知識、獲得新知識. 教師看似完美的設(shè)計(jì),其效果遠(yuǎn)不及學(xué)生自己的活動感受.

3. 數(shù)學(xué)活動教學(xué)的作用

由于“學(xué)生的身心狀態(tài)、內(nèi)心世界的巨變,自我意識的突出、獨(dú)立精神的加強(qiáng),他們不再完全是被動的適應(yīng)者、服從者,而是力求成為主動的探險者、發(fā)現(xiàn)者、選擇者、設(shè)計(jì)者”. 數(shù)學(xué)活動是將知識轉(zhuǎn)化為能力的橋梁. 活動教學(xué)可以滿足不同學(xué)生的不同要求,讓不同學(xué)生都有他的思考空間. 而學(xué)生的成功感得到滿足以后,就會激起更高層次的需求.

例如,講“平行四邊形性質(zhì)”第2課時,“平行四邊形的對角線互相平分”, 采用以下的活動教學(xué)的方法效果就很好. 自主研究,探索新知:打算在風(fēng)景區(qū)的入口處建一個平行四邊形的花壇,現(xiàn)在想在花壇里種上四種不同顏色的花,正好將花壇分成面積相等的四塊,把你的劃分方案向大家展示一下好嗎?

學(xué)生通過獨(dú)立思考、動手畫圖、交流等探究活動,得到很多不同答案,學(xué)生思維一下被打開,課堂氛圍相當(dāng)活躍.

然后教師請其中某一活動小組的所有學(xué)生在黑板上展示,并一一說明理由. 這其中將會出現(xiàn)連接對角線平分平行四邊形的方案,教師將注重該方案的解釋,適時點(diǎn)撥. 學(xué)生將通過證明三角形全等及等底同高得到四個三角形面積相等,在教師的啟發(fā)之下,自然得出平行四邊形的性質(zhì):平行四邊形的對角線互相平分.

4. 活動教學(xué)設(shè)計(jì)時應(yīng)注意以下幾點(diǎn)

活動教學(xué)涉及學(xué)生的分組的問題,在學(xué)習(xí)活動的分組中應(yīng)做到科學(xué)分組,盡量做到科學(xué)合理,分組活動時要強(qiáng)調(diào)每個人都有講話的機(jī)會,讓每名學(xué)生在原有的基礎(chǔ)上能有最大限度地提高. 活動教學(xué)讓學(xué)生在合作探究中學(xué)習(xí),其宗旨是培養(yǎng)創(chuàng)造性人才. 學(xué)生的學(xué)習(xí)活動要多元化、自主化,學(xué)生可以根據(jù)自己的興趣和能力選擇學(xué)習(xí)的內(nèi)容和方式.

強(qiáng)調(diào)學(xué)科之間的相互滲透和綜合,這就要求教師首先有較寬的知識面. 并且有較強(qiáng)的洞察能力,能將教學(xué)內(nèi)容以最好的活動方式幫助學(xué)生學(xué)習(xí)新知識、鞏固舊知識、促進(jìn)能力的培養(yǎng),使學(xué)習(xí)真正成為一件快樂的事. 對于這些看不見、摸不著的東西,就要求教師需要具備一些生物、計(jì)算機(jī)知識及一些日常生活經(jīng)驗(yàn),才能將引入講清楚,為后面的教學(xué)作好準(zhǔn)備.

教師就要有一定的組織能力,要使學(xué)生的思維處于活動狀態(tài),積極思考問題,在活動中通過觀察分析、判斷去認(rèn)識所要解決的問題本質(zhì);當(dāng)然,數(shù)學(xué)活動教學(xué)任重而道遠(yuǎn),在不斷的探索中,相信我們會走出一條符合實(shí)情的活動教學(xué)的路子.

【參考文獻(xiàn)】

[1]斯托亞爾.數(shù)學(xué)教育學(xué)[M]. 武漢:華中師范大學(xué)出版社,1997.

[2]張志勇.改革中的教學(xué)[J].教育研究,2000(3).

[3][4]全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)[M].北京:北京師范大學(xué)出版社,2001.

第9篇:平行四邊形的認(rèn)識教學(xué)案例范文

    片斷一:以美激情——認(rèn)識生活中的軸對稱圖形

    師:大自然是一個真正的美的設(shè)計(jì)師。它是一個天才的雕塑家,一個天才的畫家。它創(chuàng)造的一切,都是那么地和諧,那么地美麗。(課件展示大自然美麗畫面有火紅的楓葉、翩翩起舞的蝴蝶、挺拔的輕松、活潑可愛的海豚等等)

   師:這些美麗的物體的外形有什么特點(diǎn)?

   生:它們兩邊形狀都是對稱的,一模一樣。

   師:你們知道它們的形狀為什么兩邊都是對稱的呢?

   生:這樣顯得美麗,好看。

   生:如果不對稱,像蜻蜓、蝴蝶飛起來就不平穩(wěn)了。

   師:老師來你們學(xué)校之前,我校六(1)班同學(xué)們非常愿意和大家交朋友,給每人做了一    個剪紙小禮物,大家打開信封看一看,你們拿到的是什么禮物呀?

   生1:我收到一個美麗的小金魚。

   生2:我收到一張青松,這位同學(xué)是勉勵我要像青松那樣堅(jiān)韌挺拔,頑強(qiáng)努力!

   ……

    師:大家收到禮物,開心嗎?現(xiàn)在請大家觀察一下這些禮物都有什么共同的特點(diǎn)?小組之間相互交流一下。

    生3:我們發(fā)現(xiàn)它們都是對稱圖形。

    師:你們是怎么知道的?

    生4:我們把它們折了一下,發(fā)現(xiàn)兩邊一模一樣。

    師:你能不能演示一下怎么折的?

    學(xué)生演示,教師補(bǔ)充說:像這樣一個圖形沿一條直線對折,兩邊完全重合,數(shù)學(xué)上把這樣的這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。(板書)

    師:剛才我們說了生活中有許多圖形都是對稱的,那他們是不是軸對稱圖形呢?(電腦逐一出示:蝴蝶、加拿大國旗、對稱建筑、神州五號發(fā)射火箭(現(xiàn)場)、剪紙作品、“羽”(黑體字),要求學(xué)生判斷。)

    師:出示“羽”(黑體),這個字的形狀是不是軸對稱圖形呢?

    生(齊):是的。

    師(拿出準(zhǔn)備好的“羽”字):你們能找到一條直線,對折后使兩邊完全重合嗎?

    生:能!只要沿著兩個“習(xí)”字的中間對折就行。

    師:真能嗎?請大家閉上眼睛在大腦里折一折,能完全重合嗎?

    生5:不能完全重合,如果對折,兩個習(xí)字方向相反。

    師:到底會怎樣呢?我們折一折驗(yàn)證一下。(教師演示對折,結(jié)果兩個習(xí)字不能完全重合)

    師:如果兩個習(xí)字怎么寫,它就是軸對稱圖形?

    生6:兩個習(xí)字一正一反,這樣寫就不是“羽”字了。

    師:你們還能說些生活中的軸對稱圖形嗎?

    生:能……(略)

    [評析:“對稱”既是生活概念,又是數(shù)學(xué)的一個重要概念。生活中的對稱是一種和諧、公正、平等和美麗,如大自然中的鳥、魚、人、樹葉……。這里教師一開始就創(chuàng)設(shè)了一種以美激趣的活動情境和親和的人際情境(尤其是神州五號發(fā)射火箭圖片的出現(xiàn)和小禮物的交流),很好的激起學(xué)生熱烈的情緒和強(qiáng)烈的共鳴。但怎樣建立起數(shù)學(xué)中的對稱(本課指軸對稱)概念,嚴(yán)老師通過反復(fù)引導(dǎo)學(xué)生折一折、閉上眼睛想一想等活動,幫助學(xué)生逐步自主地建立準(zhǔn)確的數(shù)學(xué)概念。]

片斷二:自學(xué)探究——認(rèn)識數(shù)學(xué)中的軸對稱圖形

師:我們學(xué)過的平面圖形中有許多是軸對稱圖形。請學(xué)生拿出剪好的平面圖形。按要求自學(xué):

⑴先判斷一下:哪些是軸對稱圖形,匯報(bào)時要求說哪些不是軸對稱圖形,并說出為什么?

⑵動手操作驗(yàn)證。其中重點(diǎn)討論平行四邊形是不是軸對稱圖形。

⑶通過對折來逐一驗(yàn)證,折的時候和小組同學(xué)交流一下,看看能不能學(xué)到別的折法,并找出軸對稱圖形各有幾條對稱軸。

    全班交流整理時,學(xué)生對平行四邊形發(fā)生爭議。

    師:平行四邊形到底是不是軸對稱圖形,現(xiàn)在請大家分成兩組進(jìn)行辯論。贊成的要說明理由,反對的要擺出證據(jù)。

    贊成學(xué)生:平行四邊形對折后兩個三角形大小形狀都完全相同。

    反對學(xué)生:他們能完全重合嗎?

    贊成學(xué)生:能!只要把其中一個三角形旋轉(zhuǎn)180度就行了。

    反對學(xué)生:照你這樣說,“羽”字也是軸對稱圖形了。

    師:大家從他們的爭辯中得到什么啟示嗎?

    生:我們現(xiàn)在都認(rèn)為平行四邊形不是軸對稱圖形。因?yàn)檩S對稱圖形只講對折后兩邊完全重合,而不是旋轉(zhuǎn)后。

    師:說得好。一定是對折后,而且兩邊要完全重合。

    ……

    [評析:平面幾何圖形的軸對稱圖形的判斷是本節(jié)課的重點(diǎn)。在學(xué)生經(jīng)歷了生活化的情感體驗(yàn)和實(shí)踐操作,對軸對稱圖形的認(rèn)識也就水到渠成。這里教師完全放手讓學(xué)生在大膽猜想、辨別爭論、實(shí)踐驗(yàn)證,充分提供給學(xué)生從事數(shù)學(xué)活動的機(jī)會,使學(xué)生真正成為課堂學(xué)習(xí)的自主探究者。]

    片斷三:拓展升華——辯證地看待對稱美的應(yīng)用

    師:同學(xué)們?nèi)ミ^故宮嗎?想不想親眼看一看故宮!老師帶你們?nèi)タ匆幌拢埌l(fā)表一下你們的感慨?。▌赢嫵鍪竟蕦m的前景)

    提問:有沒有哪位同學(xué)看出故宮在建筑上有什么特點(diǎn)?(講究對稱)

    師:世界上有很多建筑物都是軸對稱圖形,下面請大家欣賞一下世界著名建筑。(教師播放世界著名建筑圖片:有巴黎凱旋門、埃菲爾鐵塔、英國倫敦雙塔橋、美國白宮、泰國泰姬陵等)

    師:這些建筑因?yàn)槎季哂休S對稱的特點(diǎn),給我們一種什么樣的感受?

    生:很莊嚴(yán),很神圣……(略)

    師:看完世界著名建筑,再帶大家去我國的蘇州園林看看,出示園林畫面,師旁白:“蘇州園林講究亭臺軒榭的布局,講究假山池沼的配合,講究花草樹木的映襯,講究近景遠(yuǎn)景的層次。”但是園林的設(shè)計(jì)者們是如何理解對稱的呢?

出示葉圣陶的《蘇州園林》中的一段:“我國的建筑,從古代的宮殿到近代的一般住房,絕大部分是對稱的,左邊怎么樣,右邊也怎么樣。蘇州園林可絕不講究對稱,好像故意避免似的。東邊有了一個亭子或者一道回廊,西邊決不會來一個同樣的亭子或者一道同樣的回廊。這是為什么?”

    學(xué)生思考討論交流,師相機(jī)出示原文“我想,用圖畫來比方,對稱的建筑是圖案畫,不是美術(shù)畫,而園林是美術(shù)畫,美術(shù)畫要求自然之趣,是不講究對稱的?!?/p>

    師(小結(jié)):對稱是美的,但我們也不能把對稱絕對化。對稱和缺損,構(gòu)成了自然界的另一種對稱。在對稱中求不對稱,使對稱和不對稱保持必要的張力,這是對稱思想的更深層的智慧。當(dāng)你在認(rèn)識自然的時候,留神一下,它是不是充滿著對稱;當(dāng)你在探索自然的時候,請不要忘記用對稱思想揭示它的奧秘。

    師:(評價丹師附小校園布局)昨天,嚴(yán)老師一走進(jìn)丹師附小校園,就被你們美麗的校園所吸引住了,情不自禁地拿起照相機(jī)拍了幾張圖片,現(xiàn)在嚴(yán)老師請大家運(yùn)用對稱的思想評價一下我們的校園布局(電腦呈現(xiàn)幾幅有代表性的圖片讓學(xué)生評價)。

    生7:我認(rèn)為我們學(xué)校具有對稱美,四棟教學(xué)樓正好構(gòu)成以升旗臺所在直線為對稱軸的軸對稱圖形。

    生8:我認(rèn)為學(xué)校的小花園很美,就像蘇州園林那樣。

    生9:我認(rèn)為我們學(xué)校教學(xué)樓太過于講究對稱了,顯得死板。

    ……

    師:同學(xué)們的評價似乎都有些道理。那學(xué)校的設(shè)計(jì)者為什么要設(shè)計(jì)成這樣,或者你們還有些什么樣的建議可以課后向你們的校長或者總務(wù)主任提出來,好嗎?

    [評析:生活是美的復(fù)合體,既有對稱美,又有參差美。這里巧妙地引導(dǎo)學(xué)生在葉圣陶先生優(yōu)美的散文圖畫中欣賞并感悟?qū)ΨQ美在生活中的不同顯現(xiàn),既促進(jìn)對稱美在學(xué)生幼小心靈中的升華,同時又促進(jìn)學(xué)生的審美思維呈現(xiàn)多元狀態(tài),形成具有反思品質(zhì)的“對稱思想的更深層的智慧”。 ]

    片斷四:品味創(chuàng)造——剪紙活動

    師:剪紙是我國傳統(tǒng)的民間藝術(shù)(課件展示各種精美的剪紙作品)。你們知道這件剪紙藝術(shù)品是如何創(chuàng)作出來的嗎?你們是否愿意剪一幅這樣的作品回送給句容實(shí)小的同學(xué)呢?

在歡樂的音樂聲中,學(xué)生剪出自己認(rèn)為最美的圖案,并寫上自己的寄語。

    [評析:在歡樂的音樂聲中師生共同品味中國傳統(tǒng)的剪紙藝術(shù),既弘揚(yáng)了中國文化,做到知識性、思想性和藝術(shù)性融為一體,又使學(xué)生的身心得到陶冶。把學(xué)生的作品展示出來,讓每個學(xué)生都感受到成功的喜悅。]

    反思:

    縱觀這節(jié)課,有一個明顯的特點(diǎn),就是教師注重創(chuàng)設(shè)生活與實(shí)踐的人文情境,增強(qiáng)了數(shù)學(xué)課堂教學(xué)的生活情趣。