公務(wù)員期刊網(wǎng) 精選范文 初中數(shù)學(xué)常見(jiàn)數(shù)列規(guī)律范文

初中數(shù)學(xué)常見(jiàn)數(shù)列規(guī)律精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的初中數(shù)學(xué)常見(jiàn)數(shù)列規(guī)律主題范文,僅供參考,歡迎閱讀并收藏。

初中數(shù)學(xué)常見(jiàn)數(shù)列規(guī)律

第1篇:初中數(shù)學(xué)常見(jiàn)數(shù)列規(guī)律范文

關(guān)鍵詞:數(shù)學(xué)思想方法,數(shù)學(xué)教材

一、問(wèn)題提出

數(shù)學(xué)思想方法是以具體數(shù)學(xué)內(nèi)容為載體,又高于具體數(shù)學(xué)內(nèi)容的一種指導(dǎo)思想和普遍適用的方法。它能使人領(lǐng)悟到數(shù)學(xué)的真諦,學(xué)會(huì)數(shù)學(xué)的思考和解決問(wèn)題,并對(duì)人們學(xué)習(xí)和應(yīng)用數(shù)學(xué)知識(shí)解決問(wèn)題的思維活動(dòng)起著指導(dǎo)和調(diào)控的作用。日本數(shù)學(xué)教育家米山國(guó)藏認(rèn)為,學(xué)生在進(jìn)入社會(huì)以后,如果沒(méi)有什么機(jī)會(huì)應(yīng)用數(shù)學(xué),那么作為知識(shí)的數(shù)學(xué),通常在出校門(mén)后不到一兩年就會(huì)忘掉,然而不管他們從事什么業(yè)務(wù)工作,那種銘刻在人腦中的數(shù)學(xué)精神和數(shù)學(xué)思想方法,會(huì)長(zhǎng)期地在他們的生活和工作中發(fā)揮重要作用。所以突出數(shù)學(xué)思想方法教學(xué),是當(dāng)代數(shù)學(xué)教育的必然要求,也是數(shù)學(xué)素質(zhì)教育的重要體現(xiàn),如何在中學(xué)數(shù)學(xué)教材中體現(xiàn)數(shù)學(xué)思想方法也是一個(gè)十分重要的問(wèn)題.

2001年我國(guó)新一輪基礎(chǔ)教育課程改革已正式啟動(dòng),此次基礎(chǔ)教育數(shù)學(xué)課程改革的特點(diǎn)之一就是把數(shù)學(xué)思想方法作為課程體系的一條主線。已經(jīng)有不少文章探討初中數(shù)學(xué)教材中的數(shù)學(xué)思想方法,但對(duì)高中數(shù)學(xué)教材中蘊(yùn)含的數(shù)學(xué)思想方法探討較少。事實(shí)上,高中數(shù)學(xué)教材的改革也已經(jīng)開(kāi)始醞釀,目前高中普遍使用的數(shù)學(xué)教材是人教社2000年版的《全日制普通高級(jí)中學(xué)教科書(shū)(試驗(yàn)修定本)•數(shù)學(xué)》(下稱(chēng)普通教材),也有部分高中根據(jù)學(xué)生的情況選用了原國(guó)家教委的《中學(xué)數(shù)學(xué)實(shí)驗(yàn)教材(試驗(yàn)本•必修•數(shù)學(xué))》(下稱(chēng)實(shí)驗(yàn)教材)。可以說(shuō)在素質(zhì)教育推動(dòng)下,與舊數(shù)學(xué)教材相比這兩套新教材在內(nèi)容、結(jié)構(gòu)編排上都有了很大變化,都體現(xiàn)了新的數(shù)學(xué)教育觀念,而在原國(guó)家教委的《中學(xué)數(shù)學(xué)實(shí)驗(yàn)教材》中尤其突出了數(shù)學(xué)思想和數(shù)學(xué)方法,體現(xiàn)了知識(shí)教學(xué)和能力培養(yǎng)的統(tǒng)一。本文就著重探討高中數(shù)學(xué)內(nèi)容中所蘊(yùn)含的數(shù)學(xué)思想方法,并對(duì)實(shí)驗(yàn)教材與普通教材在數(shù)學(xué)思想方法處理方面進(jìn)行比較。

二、高中數(shù)學(xué)應(yīng)該滲透的主要數(shù)學(xué)思想方法

1、數(shù)學(xué)思想與數(shù)學(xué)方法

數(shù)學(xué)思想與數(shù)學(xué)方法目前尚沒(méi)有確切的定義,我們通常認(rèn)為,數(shù)學(xué)思想就是“人對(duì)數(shù)學(xué)知識(shí)的本質(zhì)認(rèn)識(shí),是從某些具體的數(shù)學(xué)內(nèi)容和對(duì)數(shù)學(xué)的認(rèn)識(shí)過(guò)程中提煉上升的數(shù)學(xué)觀點(diǎn),它在認(rèn)識(shí)活動(dòng)中被反復(fù)運(yùn)用,帶有普遍的指導(dǎo)意義,是建立數(shù)學(xué)和用數(shù)學(xué)解決問(wèn)題的指導(dǎo)思想”。就中學(xué)數(shù)學(xué)知識(shí)體系而言,中學(xué)數(shù)學(xué)思想往往是數(shù)學(xué)思想中最常見(jiàn)、最基本、比較淺顯的內(nèi)容,例如:模型思想、極限思想、統(tǒng)計(jì)思想、化歸思想、分類(lèi)思想等。數(shù)學(xué)思想的高層次的理解,還應(yīng)包括關(guān)于數(shù)學(xué)概念、理論、方法以及形態(tài)的產(chǎn)生與發(fā)展規(guī)律的認(rèn)識(shí),任何一個(gè)數(shù)學(xué)分支理論的建立,都是數(shù)學(xué)思想的應(yīng)用與體現(xiàn)。

所謂數(shù)學(xué)方法,是指人們從事數(shù)學(xué)活動(dòng)的程序、途徑,是實(shí)施數(shù)學(xué)思想的技術(shù)手段,也是數(shù)學(xué)思想的具體化反映。所以說(shuō),數(shù)學(xué)思想是內(nèi)隱的,而數(shù)學(xué)方法是外顯的,數(shù)學(xué)思想比數(shù)學(xué)方法更深刻,更抽象地反映了數(shù)學(xué)對(duì)象間的內(nèi)在聯(lián)系。由于數(shù)學(xué)是逐層抽象的,數(shù)學(xué)方法在實(shí)際運(yùn)用中往往具有過(guò)程性和層次性特點(diǎn),層次越低操作性越強(qiáng)。如變換方法包括恒等變換,恒等變換中又分換元法、配方法、待定系數(shù)法等等。

總之,數(shù)學(xué)思想和數(shù)學(xué)方法有區(qū)別也有聯(lián)系,在解決數(shù)學(xué)問(wèn)題時(shí),總的指導(dǎo)思想是把問(wèn)題化歸為能解決的問(wèn)題,而為實(shí)現(xiàn)化歸,常用如一般化、特殊化、類(lèi)比、歸納、恒等變形等方法,這時(shí)又常稱(chēng)用化歸方法。一般來(lái)說(shuō),強(qiáng)調(diào)指導(dǎo)思想時(shí)稱(chēng)數(shù)學(xué)思想,強(qiáng)調(diào)操作過(guò)程時(shí)稱(chēng)數(shù)學(xué)方法。

2、高中數(shù)學(xué)應(yīng)該滲透的主要數(shù)學(xué)思想方法

中學(xué)數(shù)學(xué)教育大綱中明確指出數(shù)學(xué)基礎(chǔ)知識(shí)是指:數(shù)學(xué)中的的概念、性質(zhì)、法則、公式、公理、定理及由數(shù)學(xué)基礎(chǔ)內(nèi)容反映出來(lái)的數(shù)學(xué)思想方法??梢?jiàn)數(shù)學(xué)思想方法是數(shù)學(xué)基礎(chǔ)知識(shí)的內(nèi)容,而這些數(shù)學(xué)思想方法是融合在數(shù)學(xué)概念、定理、公式、法則、定義之中的。

在初中數(shù)學(xué)中,主要數(shù)學(xué)思想有分類(lèi)思想、集合對(duì)應(yīng)思想、等量思想、函數(shù)思想、數(shù)形結(jié)合思想、統(tǒng)計(jì)思想和轉(zhuǎn)化思想。與之對(duì)應(yīng)的數(shù)學(xué)方法有理論形成的方法,如觀察、類(lèi)比、實(shí)驗(yàn)、歸納、一般化、抽象化等方法,還有解決問(wèn)題的具體方法,如代入、消元、換元、降次、配方、待定系數(shù)、分析、綜合等方法。這些數(shù)學(xué)思想與方法,在義務(wù)教材的編寫(xiě)中被突出的顯現(xiàn)出來(lái)。

在高中數(shù)學(xué)教材中,一方面以抽象性更強(qiáng)的高中數(shù)學(xué)知識(shí)為載體,從更高層次延續(xù)初中涉及的那些數(shù)學(xué)思想方法的學(xué)習(xí)應(yīng)用,如函數(shù)與映射思想、分類(lèi)思想、集合對(duì)應(yīng)思想、數(shù)形結(jié)合思想、統(tǒng)計(jì)思想和化歸思想等。另一方面,結(jié)合高中數(shù)學(xué)知識(shí),介紹了一些新的數(shù)學(xué)思想方法,如向量思想、極限思想,微積分方法等。

因?yàn)槠渲幸恍?shù)學(xué)思想方法都介紹很多了,這里只談一下初等微積分的基本思想方法。無(wú)窮的方法,即極限思想方法是初等微積分的基本思想方法,所謂極限思想(方法)是用聯(lián)系變動(dòng)的觀點(diǎn),把考察的對(duì)象(例如圓面積、變速運(yùn)動(dòng)物體的瞬時(shí)速度、曲邊梯形面積等)看作是某對(duì)象(內(nèi)接正n邊形的面積、勻速運(yùn)動(dòng)的物體的速度,小矩形面積之和)在無(wú)限變化過(guò)程中變化結(jié)果的思想(方法),它出發(fā)于對(duì)過(guò)程無(wú)限變化的考察,而這種考察總是與過(guò)程的某一特定的、有限的、暫時(shí)的結(jié)果有關(guān),因此它體現(xiàn)了“從在限中找到無(wú)限,從暫時(shí)中找到永久,并且使之確定起來(lái)”(恩格斯語(yǔ))的一種運(yùn)動(dòng)辨證思想,它不僅包括極限過(guò)程,而且又完成了極限過(guò)程??v觀微積分的全部?jī)?nèi)容,極限思想方法及其理論貫穿始終,是微積分的基礎(chǔ)。

三、普通教材與實(shí)驗(yàn)教材在數(shù)學(xué)思想方法處理方面的比較

普通高中教育是與九年義務(wù)教育相銜接的高一層次基礎(chǔ)教育,在數(shù)學(xué)教材的編寫(xiě)上,必須要注意培養(yǎng)學(xué)生的創(chuàng)新精神、實(shí)踐能力和終身學(xué)習(xí)的能力。與舊教材相比,新的數(shù)學(xué)教材開(kāi)始重視滲透數(shù)學(xué)思想方法,那么高中現(xiàn)行使用的普通教材與實(shí)驗(yàn)教材在數(shù)學(xué)思想方法處理方面有何異同呢?因?yàn)閮?nèi)容太多,下面只能粗略的作一比較。

1、相同之處在于

普通教材與實(shí)驗(yàn)教材都多將數(shù)學(xué)思想方法的展示,融合在數(shù)學(xué)的定義、定理、例題中。例如集合的思想,就是通過(guò)集合的定義“把某些指定的對(duì)象集在一起就成為一個(gè)集合”,及通過(guò)用集合語(yǔ)言來(lái)表述問(wèn)題,體現(xiàn)了集合思想方法來(lái)處理數(shù)學(xué)問(wèn)題的直觀性,深刻性,簡(jiǎn)潔性。對(duì)非常重要的數(shù)學(xué)思想方法也采用單獨(dú)介紹的方式,如普通教材與實(shí)驗(yàn)教材都將歸納法列為一節(jié),詳細(xì)學(xué)習(xí)。

2、不同之處在于

(1)有些在普通教材中隱含方式出現(xiàn)的數(shù)學(xué)思想方法,在實(shí)驗(yàn)教材中被明確的指出來(lái),并用以指導(dǎo)相關(guān)數(shù)學(xué)知識(shí)的展開(kāi)。

關(guān)于數(shù)學(xué)方法

我們舉不等式證明方法的例子。實(shí)驗(yàn)教材在不等式一章第三節(jié)“證明不等式”中詳細(xì)講述了不等式證明的方法,比較法、綜合法、分析法、反證法。普通教材中雖然也在不等式一章,列出第三節(jié)“不等式的證明”介紹比較法、綜合法、分析法,但對(duì)方法的分析不夠透徹,更象是為了解釋例題。比如在綜合法的介紹中,普通教材只講:“有時(shí)我們可以用某些已經(jīng)證明過(guò)的不等式(例如算術(shù)平均數(shù)與幾何平均數(shù)的定理)和不等式的性質(zhì)推導(dǎo)出所要證明的不等式成立,這種證明方法通常叫做綜合法?!倍趯?shí)驗(yàn)教材更準(zhǔn)確更詳細(xì)的介紹:“依據(jù)不等式的基本性質(zhì)和已知的不等式,正確運(yùn)用邏輯推理規(guī)律,逐步推導(dǎo)出所要證明的不等式的方法,稱(chēng)為綜合法。綜合法實(shí)質(zhì)上是“由因?qū)Ч钡闹苯诱撟C,其要點(diǎn)是:四已知性質(zhì)、定理、出發(fā),逐步導(dǎo)出其“必要條件”,直到最后的“必要條件”是所證的不等式為止”。分析法的介紹也是這樣,在實(shí)驗(yàn)教材中給出了分析法實(shí)質(zhì)是“執(zhí)果索因”的說(shuō)明,這樣學(xué)生能清楚的領(lǐng)會(huì)綜合法、分析法的要義,會(huì)證不等式的同時(shí)學(xué)會(huì)了綜合法和分析法,而不僅是能證明幾個(gè)不等式。

關(guān)于數(shù)學(xué)思想

在實(shí)驗(yàn)教材第一冊(cè)(下)研究性課題“函數(shù)學(xué)思想及其應(yīng)用”中,明確提出“把一個(gè)看上去不是明顯的函數(shù)問(wèn)題,通過(guò)、或者構(gòu)造一個(gè)新函數(shù),利用研究函數(shù)的性質(zhì)和圖象,解決給出的問(wèn)題,就是函數(shù)思想”,并舉例用函數(shù)思想解決最值問(wèn)題、方程、不等式問(wèn)題,及一些實(shí)際應(yīng)用的問(wèn)題。其實(shí)普通教材在講函數(shù)時(shí)也在用運(yùn)動(dòng)、變化的觀點(diǎn),分析研究具體問(wèn)題中的數(shù)量關(guān)系,通過(guò)函數(shù)形式把這種數(shù)量關(guān)系進(jìn)行刻劃并加以研究,但從未提函數(shù)思想方法。雖然實(shí)驗(yàn)教材中只是以研究性課題的形式,對(duì)函數(shù)思想作以介紹和應(yīng)用探討,可這已經(jīng)是一種重視數(shù)學(xué)思想方法的信號(hào),隨著今后素質(zhì)教育的推進(jìn),和實(shí)踐經(jīng)驗(yàn)的積累,我想數(shù)學(xué)思想方法在數(shù)學(xué)教材中會(huì)有更明確的介紹。我們舉向量的例子。

(2)實(shí)驗(yàn)教材中還增加了一些數(shù)學(xué)思想方法的介紹。

關(guān)于數(shù)學(xué)方法

普通教材在第一冊(cè)第三章“數(shù)列”中只介紹了數(shù)列的概念、等差等比數(shù)列及其求和,而在實(shí)驗(yàn)教材第二冊(cè)(下)的第十章“數(shù)列”中增加了第四節(jié)“數(shù)列應(yīng)用舉例”介紹了作差,將某些復(fù)雜數(shù)列轉(zhuǎn)化為等差等比數(shù)列的方法。這在潛移默化中也滲透了轉(zhuǎn)化的思想。又如在第一冊(cè)(上)中,增加了研究性課題“待定系數(shù)法的原理、方法及初步應(yīng)用”,閱讀材料“插值公式與實(shí)驗(yàn)公式”,雖然不是作為正式章節(jié),但也體現(xiàn)了對(duì)數(shù)學(xué)思想方法的重視。再如數(shù)學(xué)歸納法普通教材介紹的相當(dāng)簡(jiǎn)略,而實(shí)驗(yàn)教材詳細(xì)介紹了什么是歸納法,歸納法的結(jié)論是否一定正確,什么是數(shù)學(xué)歸納法歸納起始命題等問(wèn)題,還舉了大量例子,切實(shí)注重讓學(xué)生真正理解方法。

關(guān)于數(shù)學(xué)思想

實(shí)驗(yàn)教材中對(duì)向量,解析幾何的處理體現(xiàn)了將向量思想,幾何代數(shù)化思想的引入,并用這些數(shù)學(xué)思想方法來(lái)統(tǒng)領(lǐng)相關(guān)數(shù)學(xué)知識(shí)的介紹。實(shí)驗(yàn)教材在第六章“平面向量”開(kāi)首就講:“代數(shù)學(xué)的基本思想方法是運(yùn)用運(yùn)算律去系統(tǒng)地解答各種類(lèi)型的代數(shù)問(wèn)題;幾何學(xué)研究探索的內(nèi)容是空間圖形的性質(zhì)?!谶@一章中,我們首先要把表達(dá)“一點(diǎn)相對(duì)另一點(diǎn)的位置”的量定義為一種新型的基本幾何量……我們稱(chēng)之為向量,……這樣,我們就可以用代數(shù)的方法研究平面圖形性質(zhì),把各種各樣的幾何問(wèn)題用向量運(yùn)算的方法來(lái)解答。再看普通教材第五章“平面向量”的前提介紹:“……,位移是一個(gè)既有大小又有方向的量,這種量就是我們本章報(bào)要研究的向量。向量是數(shù)學(xué)中的重要概念之一。向量和數(shù)一樣也能進(jìn)行運(yùn)算,而且用向量的有關(guān)知識(shí)更新還能有效地解決數(shù)學(xué)、物理、等學(xué)科中的很多問(wèn)題。這一章里,我們將學(xué)習(xí)向量的概念、運(yùn)算及其簡(jiǎn)單的應(yīng)用。”顯然實(shí)驗(yàn)教材是從數(shù)學(xué)思想方法的高度來(lái)引入向量,這也使后面內(nèi)容的學(xué)習(xí)可以以此為線索,體現(xiàn)了知識(shí)的內(nèi)在統(tǒng)一。實(shí)驗(yàn)教材在第六章“平面向量”之后,緊接著設(shè)置了第七章“直線和圓”,從第七章的內(nèi)容提要中我們看出這樣設(shè)計(jì)是有良苦用心的。內(nèi)容提要如下:“人們對(duì)于事物的認(rèn)識(shí)和理解,總是要經(jīng)過(guò)逐步深化的過(guò)程和不斷推進(jìn)的階段。對(duì)于空間的認(rèn)識(shí)和理解,就是先有實(shí)驗(yàn)幾何,然后推進(jìn)到推理幾何,理推進(jìn)到解析幾何。在第六章,我們引進(jìn)了平面向量,并且建立了向量的基本運(yùn)算結(jié)構(gòu),把平面圖形的基本性質(zhì)轉(zhuǎn)化為得量的運(yùn)算和運(yùn)算律,從而奠定了空間結(jié)構(gòu)代數(shù)化的基礎(chǔ);再通過(guò)向量及其運(yùn)算的坐標(biāo)表示,實(shí)現(xiàn)了從推理幾何到解析幾何的轉(zhuǎn)折。解析幾何是用坐標(biāo)方法研究圖形,基本思想是通過(guò)坐標(biāo)系,把點(diǎn)與坐標(biāo)、曲線與方程等聯(lián)系起來(lái),從而達(dá)到形與數(shù)的結(jié)合,把幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題進(jìn)行研究和解決?!辈⑶以诤竺嬷本€的方程、直線的位置關(guān)系點(diǎn)到直線的距離幾節(jié)中都自然而然的延續(xù)了向量的思想和方法,使直線的學(xué)習(xí)連慣、完整、深刻。而普通教材將第一冊(cè)(下)的第五章設(shè)為“平面向量”,在第二冊(cè)(上)的第七章才設(shè)置“直線和圓的方程”,中間隔了不等式一章,并且在內(nèi)容上,也沒(méi)有將向量與直線方程聯(lián)系起來(lái),關(guān)于法向量、點(diǎn)直線點(diǎn)法式方程都沒(méi)有講,只是隨后設(shè)置了“向量與直線”的閱讀材料簡(jiǎn)單介紹法向量、直線間的位置關(guān)系。

四、重視數(shù)學(xué)思想方法,深化數(shù)學(xué)教材改革

1、在知識(shí)發(fā)生過(guò)程中滲透數(shù)學(xué)思想方法

這主要是指定義、定理公式的教學(xué)。一是不簡(jiǎn)單下定義。數(shù)學(xué)的概念既是數(shù)學(xué)思維基礎(chǔ),又是數(shù)學(xué)思維的結(jié)果。概念教學(xué)不應(yīng)簡(jiǎn)單地給出定義,而是應(yīng)引導(dǎo)學(xué)生感受或領(lǐng)悟隱含于概念形成之中的數(shù)學(xué)思想方法。二是定理公式介紹中不過(guò)早下結(jié)論,可能的話展示定理公式的形成過(guò)程,給教師、學(xué)生留有參與結(jié)論的探索、發(fā)現(xiàn)和推導(dǎo)過(guò)程的機(jī)會(huì)。

2、在解決問(wèn)題方法的探索中激活數(shù)學(xué)思想方法

①注重解題思路的數(shù)學(xué)思想方法分析。在例題、定理證明活動(dòng)中,揭示其中隱含的數(shù)學(xué)思維過(guò)程,才能有效地培養(yǎng)和發(fā)展學(xué)生的數(shù)學(xué)思想方法。如運(yùn)用類(lèi)比、歸納、猜想等思想,發(fā)現(xiàn)定理的結(jié)論,學(xué)會(huì)用化歸思想指導(dǎo)探索論證途徑等。

②增強(qiáng)解題的數(shù)學(xué)思想方法指導(dǎo)。解題的思維過(guò)程都離不開(kāi)數(shù)學(xué)思想的指導(dǎo),可以說(shuō),數(shù)學(xué)思想指導(dǎo)是開(kāi)通解題途徑的金鑰匙。將解題過(guò)程從數(shù)學(xué)思想高度進(jìn)行提煉和反思,并從理論高度敘述數(shù)學(xué)思想方法,對(duì)學(xué)生真正理解掌握數(shù)學(xué)思想方法,產(chǎn)生廣泛遷移有重要意義。3、在知識(shí)的總結(jié)歸納過(guò)程中概括數(shù)學(xué)思想方法,以數(shù)學(xué)思想方法為主線貫穿相關(guān)知識(shí)