公務(wù)員期刊網(wǎng) 論文中心 正文

生物醫(yī)學(xué)納米材料作用

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了生物醫(yī)學(xué)納米材料作用范文,希望能給你帶來靈感和參考,敬請閱讀。

生物醫(yī)學(xué)納米材料作用

1納米材料

納米材料是指在三維空間中至少有一維處于納米尺度范圍(1~100nm)或由納米粒子作為基本單元構(gòu)成的材料.納米粒子也叫超微顆粒,處于原子簇和宏觀物體交界的過渡區(qū)域,這樣的體系既非典型的微觀系統(tǒng)亦非典型的宏觀系統(tǒng),是一種典型的介觀系統(tǒng),與常規(guī)尺度物質(zhì)相比具有表面效應(yīng)、小尺寸效應(yīng)和宏觀量子隧道效應(yīng)等[1-2].納米技術(shù)是通過對納米尺度物質(zhì)的操控來實(shí)現(xiàn)材料、器件和系統(tǒng)的創(chuàng)造和利用,例如在原子、分子和超分子水平上的操控.納米技術(shù)應(yīng)用于生物領(lǐng)域產(chǎn)生了納米生物技術(shù),納米生物技術(shù)的發(fā)展已經(jīng)對醫(yī)學(xué)產(chǎn)生很大的影響,過去的幾十年中,市場上已經(jīng)出現(xiàn)基于納米技術(shù)的一些藥物,許多具有藥物診斷和藥物傳輸功能的納米材料都可以應(yīng)用到生物醫(yī)學(xué)中.納米技術(shù)打開了微米尺度以外的世界,而細(xì)胞水平上的生理和病理過程都發(fā)生在納米尺度,因此納米技術(shù)將對生物醫(yī)學(xué)產(chǎn)生深遠(yuǎn)影響.納米生物技術(shù)和生物醫(yī)學(xué)以及其他技術(shù)的關(guān)系如圖1所示[3].本文僅對量子點(diǎn)、納米金、碳納米管、氧化鐵和富勒烯等納米材料在生物醫(yī)學(xué)中的應(yīng)用研究現(xiàn)狀及發(fā)展前景做一綜述.

2納米材料在生物醫(yī)學(xué)中的應(yīng)用

2.1量子點(diǎn)

量子點(diǎn)(quantumdots,QDs)是一種粒徑為2~10nm的半導(dǎo)體納米晶,主要包括硒化鎘、碲化鎘、硫化鎘、硒化鋅和硫化鉛等.與傳統(tǒng)的有機(jī)熒光染料相比,QDs具有激發(fā)波長可調(diào)、熒光強(qiáng)度更高、穩(wěn)定性更強(qiáng)、不易發(fā)生光漂白和同時(shí)激發(fā)多種熒光等優(yōu)點(diǎn).通過對多種量子點(diǎn)同時(shí)進(jìn)行激發(fā),可以達(dá)到多元化檢測的目的,有利于進(jìn)行高通量篩選.QDs的發(fā)射光譜隨尺寸大小和化學(xué)組成變化而有所改變,因此可以通過控制QDs的尺寸和化學(xué)組成使得其發(fā)射光譜覆蓋整個(gè)可見光區(qū)[4].隨著QDs尺寸的減小,其電子能量的不連續(xù)性產(chǎn)生獨(dú)特光學(xué)性質(zhì),因此,QDs可以作為熒光探針用于生物分子成像,進(jìn)行生物分子的識別.Goldman等[5]利用親和素修飾CdSe/ZnSQDs,通過親和素-生物素化抗體的特異性結(jié)合形成熒光納米粒子復(fù)合抗體,探討了在蛋白毒素檢測領(lǐng)域的應(yīng)用前景.Genin等[6]以QDs為探針對半胱氨酸蛋白進(jìn)行檢測,檢測時(shí)間可以持續(xù)到150s,檢測機(jī)理是將QDs與有機(jī)熒光染料分子CrAsH、半胱氨酸依次結(jié)合,利用形成的復(fù)合體進(jìn)行檢測.Liang等[7]研究鏈酶親和素修飾的QDs對mi-croRNA的定量檢測效果,利用QDs發(fā)出的熒光信號對microRNA的含量進(jìn)行測定,最低檢測限達(dá)到0.4fmol.Shepard等[8]利用量子點(diǎn)和Cy3,Cy5熒光染料共同作用,對炭疽桿菌進(jìn)行多元檢測,大大提高了檢測效率,與傳統(tǒng)的雙光色檢測相比體系通量提高了4倍.杜保安等[9]采用水相合成法合成了Mn2+摻雜CdTe量子點(diǎn),通過在CdTe量子點(diǎn)中摻雜Mn2+,進(jìn)一步改良CdTe的發(fā)光性能及熱穩(wěn)定性,擴(kuò)大了量子點(diǎn)的應(yīng)用范圍.聚乙二醇(polyethyleneglycol,PEG)因其容易和氨基、羧基、生物素等多種功能化基團(tuán)反應(yīng)而常用于QDs的表面改性,而且PEG還能夠增加QDs的化學(xué)穩(wěn)定性.研究發(fā)現(xiàn),用低聚PEG-磷酸酯膠束包覆QDs后分散于水中,其熒光強(qiáng)度幾周內(nèi)都不會發(fā)生改變,若分散于磷酸鹽溶液中,80h后熒光強(qiáng)度只降低10%[10].QDs特殊的光學(xué)性質(zhì)使得它已逐步應(yīng)用于光發(fā)射二極管、生物化學(xué)傳感器、太陽能電池、生物分子成像和納米醫(yī)學(xué)等領(lǐng)域.

2.2金納米粒子

金納米粒子(AuNPs)具有獨(dú)特的光學(xué)性質(zhì)、良好的生物相容性、易修飾生物分子以及制備簡單等特點(diǎn),因此在生物傳感、分子成像、腫瘤治療和藥物傳輸?shù)壬镝t(yī)學(xué)領(lǐng)域得到廣泛研究.Wang等[11]利用N-羥基琥珀酰亞胺修飾的AuNPs實(shí)時(shí)檢測人體血液中鏈霉素和生物素的相互作用,發(fā)現(xiàn)經(jīng)修飾后的AuNPs具有3μg/mL的低檢出限和3~50μg/mL的寬動(dòng)態(tài)檢測范圍,為構(gòu)建全血中蛋白檢測和細(xì)胞分析的新型光學(xué)生物傳感器提供了思路.Huang等[12]將金納米棒連接上表皮生長因子抗體后作用于癌細(xì)胞,發(fā)現(xiàn)金納米棒附近的分子表現(xiàn)出更強(qiáng)、更敏銳和極化的拉曼光譜,這對于腫瘤的早期準(zhǔn)確檢測成像具有很大意義.Wei等[13]研究了AuNPs和紫杉醇對HepG2肝癌細(xì)胞凋亡的影響,發(fā)現(xiàn)AuNPs單獨(dú)或與紫杉醇協(xié)同作用可以引起HepG2細(xì)胞凋亡,AuNPs可以增強(qiáng)紫杉醇對HepG2細(xì)胞的抑制和凋亡作用.Tong等[14]研究發(fā)現(xiàn)葉酸結(jié)合的金納米棒在近紅外光照射下可以破壞質(zhì)膜,這是由于細(xì)胞內(nèi)鈣離子的快速增多進(jìn)而導(dǎo)致肌動(dòng)蛋白動(dòng)態(tài)異常造成的.但是,關(guān)于AuNPs的研究還處于初級階段,許多問題尚需進(jìn)一步的深入研究.例如:如何制備各種形態(tài)和結(jié)構(gòu)以及可控成分的AuNPs,如何在治療過程中實(shí)現(xiàn)定向輸送和釋放的靶向性以及使AuNPs作為探針的信號放大以便用于生物檢測等都需要進(jìn)一步的探索.本課題組Liu等[15]研究了AuNPs對成骨細(xì)胞系MC3T3-E1的增殖、分化和礦化功能的影響,結(jié)果表明,20,40nm的AuNPs均促進(jìn)MC3T3-E1細(xì)胞的增殖、分化和礦化功能,且呈現(xiàn)出劑量和時(shí)間依賴性.RT-PCR結(jié)果表明,20,40nm的AuNPs均促進(jìn)runt相關(guān)轉(zhuǎn)錄因子2(Runx2)、骨形態(tài)發(fā)生蛋白2(BMP-2)、堿性磷酸酶(ALP)和骨鈣素(OCN)基因的表達(dá).結(jié)果顯示,AuNPs能夠促進(jìn)MC3T3-E1細(xì)胞成骨分化及礦化功能,而且影響隨納米顆粒的尺寸變化有所不同.Runx2,BMP-2,ALP和OCN4種基因可能相互影響,從而刺激MC3T3-E1細(xì)胞的成骨分化.實(shí)驗(yàn)結(jié)果提示,與骨中羥基磷灰石晶體尺寸相似的AuNPs可能扮演了一個(gè)晶核的角色,從而刺激其周圍細(xì)胞的增殖、分化和礦化,形成鈣的沉積.隨后Liu等[16]又研究了AuNPs對骨髓基質(zhì)細(xì)胞(MSCs)增殖、成骨和成脂分化的影響,結(jié)果表明,AuNPs可以促進(jìn)MSCs向成骨方向分化,抑制向成脂方向及成脂橫向分化.結(jié)果揭示了AuNPs是如何進(jìn)行細(xì)胞內(nèi)活動(dòng)進(jìn)而影響骨髓基質(zhì)細(xì)胞的功能,對合理設(shè)計(jì)用于組織工程和其他生物醫(yī)學(xué)方面的新材料具有重要意義.

2.3碳納米管

碳納米管(carbonnanotubes,CNTs)的結(jié)構(gòu),形象地講是由1個(gè)或多個(gè)只含sp2雜化碳原子的石墨薄片卷曲成的納米級圓筒.根據(jù)石墨片層數(shù)不同,CNTs可分為單壁碳納米管(SWCNTs)和多壁碳納米管(MWCNTs).CNTs的長度從幾百納米到幾毫米不等,但它們的直徑均在納米量級,SWCNTs和MWCNTs的直徑分別在0.4~3.0nm和2~500nm.MWCNTs也是由幾個(gè)石墨片層的圓筒構(gòu)成,層間距在0.3~0.4nm.CNTs可以在藥物供給系統(tǒng)與細(xì)胞之間形成圓筒形的渠道,輸送肽、蛋白質(zhì)、質(zhì)粒DNA或寡核苷酸等物質(zhì).CNTs還能促進(jìn)骨組織的修復(fù)生長,促進(jìn)神經(jīng)再生,減少神經(jīng)組織瘢痕產(chǎn)生.Kam等[17]將CNTs胺基修飾后,通過生物素連接具有熒光的抗生素蛋白鏈菌素,孵育白血病細(xì)胞HL60一定時(shí)間后,發(fā)現(xiàn)細(xì)胞內(nèi)產(chǎn)生較強(qiáng)的熒光,且隨CNTs濃度和孵育時(shí)間的延長,熒光強(qiáng)度不斷增強(qiáng),證明CNTs能將大分子蛋白載入HL60細(xì)胞內(nèi).Feazell等[18]研究胺基化的SWCNTs運(yùn)輸鉑(Ⅳ)復(fù)合物的效果,結(jié)果發(fā)現(xiàn)鉑(Ⅳ)復(fù)合物以胺基化SWCNTs為載體進(jìn)入睪丸癌細(xì)胞,并且其細(xì)胞毒性比連接前高出100多倍,為提高腫瘤化療藥物的敏感性提供了新思路.Zhang等[19]采用原代培養(yǎng)小鼠成骨細(xì)胞(OBs)為模型,研究了SWCNTs(直徑<2nm)、DWCNTs(直徑<5nm)和MWCNTs(直徑<10nm)對OBs增值、分化和礦化功能的影響,結(jié)果表明,它們均抑制OBs的增殖、橫向分化和礦化功能,且呈現(xiàn)時(shí)間和劑量依賴性,并且明顯抑制了OBs中Runx-2和Col-Ⅰ蛋白的表達(dá)水平.Liu等[20]進(jìn)一步研究了SWCNTs(直徑<2nm)和MWCNTs(直徑<10nm)對骨髓基質(zhì)細(xì)胞(MSCs)增殖、成骨分化、成脂分化和礦化的影響,結(jié)果表明,SWCNTs和MWCNTs明顯抑制了MSCs的增殖,且呈現(xiàn)出了劑量依賴關(guān)系.SWCNTs和MWCNTs抑制MSCs增殖和成骨分化的機(jī)制可能是通過調(diào)節(jié)依賴于Smad的骨形態(tài)發(fā)生蛋白(BMP)信號通路而起作用.結(jié)果提示,CNTs對OBs和MSCs的生長起著重要的調(diào)控作用,其生物安全性評價(jià)還需進(jìn)行充分研究以便將來進(jìn)行合理設(shè)計(jì)用于生物醫(yī)學(xué).由于碳納米管獨(dú)特的結(jié)構(gòu),其外表面既可以非共價(jià)吸附各種分子,還可以共價(jià)鍵合多種化學(xué)基團(tuán),內(nèi)部則可以包埋小分子,從而提高了其表面負(fù)載率及實(shí)現(xiàn)增溶和靶向等.在生物醫(yī)學(xué)上,鑒于碳納米管具有的生物膜穿透性和相對低的細(xì)胞毒性,在藥物傳遞方面具有較好的應(yīng)用前景.碳納米管的應(yīng)用給腫瘤的診斷與治療帶來了新的機(jī)遇,隨著對其用作藥物載體的深入研究,低毒高效的修飾性碳納米管有望在將來廣泛應(yīng)用于臨床[21].

2.4氧化鐵納米粒子

氧化鐵納米粒子由于具有超順磁性,是一類具有可控尺寸、能夠外部操控并可用于核磁共振成像(MRI)造影的材料.這使得氧化鐵納米粒子廣泛應(yīng)用于蛋白質(zhì)提純、醫(yī)學(xué)影像、藥物傳輸和腫瘤治療等生物醫(yī)學(xué)領(lǐng)域.Wang等[22]采用一種新方法將色酮偶聯(lián)到Fe3O4納米顆粒上,合成的結(jié)合物使色酮在培養(yǎng)基中的溶解度急劇增加,從而使HeLa細(xì)胞吸收色酮能力增強(qiáng),結(jié)合物能更有效抑制HeLa細(xì)胞增殖,這種色酮耦合的Fe3O4納米粒子可以作為多功能輸送系統(tǒng)用于診斷和治療.Wei等[23]研究發(fā)現(xiàn)Fe3O4納米顆??梢蕴禺愋詸z測H2O2和葡萄糖,并且具有很高的靈敏度.結(jié)果顯示,對H2O2的檢測精度可達(dá)到3×10-6mol/L,對葡萄糖的檢測精度達(dá)到5×10-5~1×10-3mol/L.Xie等[24]發(fā)展了一種新方法用于制備超微磁性納米顆粒,其中小配體4-甲基苯膦二酚用作表面活性劑來穩(wěn)定顆粒的表面,其與氧化鐵表面具有很強(qiáng)的螯合作用,進(jìn)而與環(huán)狀多肽鏈接,可用于靶向診斷腫瘤細(xì)胞.劉磊等[25]通過化學(xué)共沉淀法制備了鐵磁性納米粒子(FeNPs),并以W/O反相微乳法制備了包埋熒光染料三聯(lián)吡啶釕配合物Ru(bpy)2+3的二氧化硅納米粒子(SiNPs)和二氧化硅磁性納米粒子(Si/FeNPs),并研究了不同濃度的FeNPs,SiNPs和Si/FeNPs對肝癌細(xì)胞HepG2的增殖、細(xì)胞周期、表面形態(tài)和超微結(jié)構(gòu)的影響,結(jié)果表明FeNPs對HepG2細(xì)胞增殖和周期沒有顯著影響,SiNPs和Si/FeNPs能夠促進(jìn)細(xì)胞生長分裂,具有促增殖作用;SiNPs和Si/FeNPs通過細(xì)胞膜的包吞作用隨機(jī)進(jìn)入細(xì)胞內(nèi),進(jìn)入細(xì)胞后,不影響細(xì)胞的形態(tài)和超微結(jié)構(gòu).實(shí)驗(yàn)結(jié)果對進(jìn)一步研究修飾特異性抗體、蛋白或負(fù)載抗癌藥物之后的二氧化硅納米粒子在一定交變磁場作用下的抗腫瘤效果具有重要意義.氧化鐵納米粒子是目前國內(nèi)外大力研究的一種新型靶向給藥系統(tǒng),應(yīng)用前景十分廣泛.但是成功應(yīng)用于活體腫瘤靶向納米探針和納米載藥體目前仍然存在很多障礙:1)表面進(jìn)行化學(xué)修飾后,氧化鐵納米納米粒子的磁化量降低;2)納米氧化鐵上嵌入配基結(jié)合位點(diǎn)可能會降低它的靶向特異性,并且所載藥物常常在內(nèi)涵體或溶酶體中釋放,而不是靶細(xì)胞的胞質(zhì);3)在到達(dá)腫瘤組織之前,結(jié)合或封裝的化療藥物在血液中很快釋放.氧化鐵納米粒子和其他可生物降解的、生物相容性好的聚合物微團(tuán)的結(jié)合可能會解決上述問題.可以預(yù)期,隨著人們對磁性納米粒子聚合物研究的不斷深入,磁性納米氧化鐵粒子將在腫瘤的診斷及治療中發(fā)揮越來越重要的作用.

2.5富勒烯

富勒烯(C60)是一個(gè)由12個(gè)五元環(huán)和20個(gè)六元環(huán)組成的球形三十二面體,外形酷似足球,直徑為0.71nm.六元環(huán)的每個(gè)碳原子均以雙鍵與其他碳原子結(jié)合,形成類似苯環(huán)的結(jié)構(gòu).富勒烯、金屬內(nèi)嵌富勒烯及其衍生物由于獨(dú)特的結(jié)構(gòu)和物理化學(xué)性質(zhì),在生物醫(yī)學(xué)領(lǐng)域有廣泛的應(yīng)用.如抗氧化活性和細(xì)胞保護(hù)作用、抗菌活性、抗病毒作用、藥物載體和腫瘤治療等[26].Hu等[27]發(fā)現(xiàn)丙氨酸修飾的水溶性富勒烯衍生物能夠抑制過氧化氫誘導(dǎo)的細(xì)胞凋亡,其機(jī)制是通過清除細(xì)胞內(nèi)外活性氧而抑制細(xì)胞凋亡.Yin等[28]研究發(fā)現(xiàn)C60(C(COOH)2)2,C60(OH)22和Gd@C82(OH)223種富勒烯衍生物可以降低細(xì)胞內(nèi)活性氧水平來保護(hù)過氧化氫誘導(dǎo)的細(xì)胞損傷,其清除的活性氧自由基包括超氧陰離子、單線態(tài)氧和羥基自由基等.Mashino等[29]研究發(fā)現(xiàn)甲基吡咯碘修飾的富勒烯衍生物可以通過抑制大腸桿菌的能量代謝對其活性起到抑制作用.Chen等[30]發(fā)現(xiàn)Gd@C82(OH)22能有效抑制腫瘤生長并對機(jī)體不產(chǎn)生任何毒性,其對H22肝癌動(dòng)物模型抗腫瘤效率比環(huán)磷酰胺和順鉑都高,其抑瘤效果并不像傳統(tǒng)藥物對腫瘤的直接殺傷作用,而是通過其他機(jī)制來完成.實(shí)驗(yàn)結(jié)果表明Gd@C82(OH)22能提高免疫應(yīng)答能力,促進(jìn)巨噬細(xì)胞和T細(xì)胞分泌IL-2,TNF-α和IFN-γ等一系列免疫因子,同時(shí)促進(jìn)血液中T細(xì)胞亞型Th1型因子IL-2,IFN-γ和TNF-α的分泌,說明它的抑制腫瘤生長效果有可能是通過激活機(jī)體免疫功能實(shí)現(xiàn)的[31].Zhou等[32]采用差速離心和ICP-MS測定方法研究了Gd@C82(OH)22在荷瘤小鼠組織中的亞細(xì)胞分布情況,結(jié)果表明此納米顆??梢赃M(jìn)入細(xì)胞,其亞細(xì)胞分布模式與GdCl3顯著不同,Gd@C82(OH)22在動(dòng)物體內(nèi)是以整個(gè)完整碳籠形式存在,且在代謝過程中碳籠不會打開釋放出內(nèi)部的Gd3+.隨后研究了Gd@C82(OH)22和C60(OH)22對荷Lewis肺轉(zhuǎn)移瘤小鼠氧化應(yīng)激水平的影響,發(fā)現(xiàn)2種富勒烯衍生物可以通過清除自由基抑制脂質(zhì)過氧化下調(diào)氧化應(yīng)激相關(guān)指標(biāo),降低由于腫瘤轉(zhuǎn)移到肺造成的肺損傷[33].這些結(jié)果都為解釋Gd@C82(OH)22納米顆粒的抗腫瘤生長機(jī)制提供了證據(jù),對開展金屬富勒烯在抗腫瘤藥物領(lǐng)域的研究具有很大意義.

3展望

納米材料的生物學(xué)性質(zhì)與自身的納米尺寸效應(yīng)和納米結(jié)構(gòu)效應(yīng)這2個(gè)方面有關(guān).在納米生物醫(yī)學(xué)研究中,人們已普遍承認(rèn)“尺寸-效應(yīng)”關(guān)系的重要作用,尺寸影響其生物效應(yīng)的根源可以歸因于納米尺度下的巨大比表面積引起的超高反應(yīng)活性.同等質(zhì)量、同一物質(zhì)的比表面積隨尺寸減少而增大.納米尺度物質(zhì)的表面分子數(shù)目與顆粒尺寸呈負(fù)相關(guān),其表面分子數(shù)目隨尺度減小而急劇增加.因此,不同尺度的QDs,AuNPs和CNTs表現(xiàn)出來的細(xì)胞生物效應(yīng)呈現(xiàn)出顯著不同的結(jié)果.除尺寸效應(yīng)外,納米結(jié)構(gòu)效應(yīng)也是影響材料生物醫(yī)學(xué)應(yīng)用的另一重要因素.納米材料的生物學(xué)性質(zhì)與其本身的結(jié)構(gòu)密切相關(guān),物質(zhì)結(jié)構(gòu)不可避免地影響其在生物機(jī)體的活性、強(qiáng)度、結(jié)合位點(diǎn)以及動(dòng)力學(xué)性質(zhì)等.以碳納米材料為例,SWCNTs,MWCNTs和C60都是由碳原子組成的結(jié)構(gòu)不同的碳的同素異形體,盡管3種納米材料的化學(xué)組成相同,但在相同劑量下,其生物學(xué)活性卻有很大區(qū)別,而這種不同的生物活性可能跟它們的納米結(jié)構(gòu)密切相關(guān).因此,納米生物醫(yī)學(xué)除了要考慮傳統(tǒng)的“劑量-效應(yīng)”關(guān)系之外,還要考慮新的“納米尺寸-效應(yīng)”和“納米結(jié)構(gòu)-效應(yīng)”等[34].納米生物技術(shù)的發(fā)展將對傳統(tǒng)醫(yī)學(xué)產(chǎn)生很大影響,納米技術(shù)應(yīng)用到生物醫(yī)學(xué)領(lǐng)域,為生物醫(yī)學(xué)技術(shù)研究提供了重大創(chuàng)新機(jī)遇和市場前景.納米生物醫(yī)學(xué)研究為合理設(shè)計(jì)功能納米器件提供了機(jī)會,進(jìn)一步促進(jìn)了臨床納米藥物的發(fā)展.例如:1)能夠設(shè)計(jì)更有效的靶向藥物運(yùn)輸系統(tǒng)從而解決傳統(tǒng)化療藥物的毒性和靶向等問題;2)可以提供在細(xì)胞內(nèi)的計(jì)算機(jī)控制的分子工具,在細(xì)胞和分子水平上更精確地操作藥物分子,從而起到清除循環(huán)系統(tǒng)中的障礙、殺死癌細(xì)胞或取代亞細(xì)胞器等功能;3)提供超微生物傳感器,能夠在內(nèi)部觀察細(xì)胞的功能,在分子水平上對組織進(jìn)行更快更細(xì)的檢測分析,從而對細(xì)胞、亞細(xì)胞和分子行為進(jìn)行詳細(xì)準(zhǔn)確的分析.納米材料所展現(xiàn)的優(yōu)異性能決定其在生物醫(yī)學(xué)領(lǐng)域具有良好的應(yīng)用前景,但納米材料在生物醫(yī)學(xué)中的應(yīng)用研究尚處于初期階段.目前缺乏對納米材料生產(chǎn)、使用和轉(zhuǎn)化等整個(gè)周期的了解,對進(jìn)入人體內(nèi)的納米材料安全性研究途徑還不夠全面,缺乏標(biāo)準(zhǔn)化的納米材料安全性評價(jià)程序.如何建立健全評價(jià)納米材料和納米藥物安全性的標(biāo)準(zhǔn)評價(jià)體系和檢測方法,以及如何健全納米生產(chǎn)企業(yè)的監(jiān)督管理方法以保證生物和環(huán)境安全刻不容緩[35].